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Abstract

Mechatronics systems are hybrid systems with interacting continuous and
discrete components. The behavior of mechatronics systems is described by
equations of motions that generally depend on both. In turn, these equations
contain a mixture of dynamic equations and logic. The continuous structure
represents the physical system which includes the actuators, the target
system and the sensing system. The discrete structure represents the logical
system which could be seen as a mode changer, a supervisor, a state
machine or a tuner depending on the application. The logical system senses
and tries to control the physical system by issuing discrete logical directives
at event times that will bring the physical system to a desired mode or state.

The presence of such discrete events could cause the physical system to
switch between different mode models. The overall system then evolve in a
piecewise continuous manner, where governing equation changes at event
time possibly accompanied by jumps in state variables. Mathematically, this
causes physical state variables to switch or jump between different modes
of operations. Our primary goal in this dissertation is to develop a
consistent modeling framework that is capable of handling this mode-
switching phenomenon. The formalism, which we adopt here, is based on
utilizing multidimensional arrays as a modeling tool. The general features
of this framework can be summarized as follows:

1. The logical system is modeled as an array-based inference engine
that handles all deductive reasoning activities. The logical system is
seen here as a higher level abstraction of the physical system whose
logical variables have meanings grounded in the physical system
and its environment.

2. The physical system is modeled as a set of hybrid differential
equations that explicitly contain all modes of operations the
physical system undergoes. In this formulation, the physical system
model contains real as well as logic variables from the binary
domain. These logic variables represent the directives issued by the
logical system to bring the physical system to the desired mode.

The most remarkable advantages, in our opinion, of the presented modeling
framework are:

1. Small set of operations will apply in general for model formulation.

2. Model generation can be fully automated.

3. Mixed discrete and continuous simulation can be performed in any
array-oriented environment.



6

In the course of working with the subject of system modeling, we have
examined the possibility of using array-based logic for feedback control.
The intention was to extend the role of logical system from mainly a
switching logic controller to include feedback controller. The results of this
work are published in [34,35]. We have chosen not to include this part of
the research in the dissertation in order to keep the focus on the continuous
system modeling.
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1 INTRODUCTION

A central idea involved in the study of any physical, sociological or
economical system is the idea of modeling and simulation [50]. These two
concepts have become central to all discipline of engineering and science.
Modeling and simulation are used in the analysis of real systems where they
help us to gain understanding of the functioning of our real world. They are
also important to the design of new systems where they enable us to predict
their behavior before they are built.

Modeling can be described as the process of organizing knowledge about a
given system [18]. Models of systems are simplified, abstracted constructs
used to represent some aspects of the real system. Scaled physical models
are well known in engineering, in this category falls the wind tunnel
models, oil platform models and plastic models of metal parts used in
photo-elastic stress analysis. These physical models are mini-versions of the
real system and thus contain only those aspects of the real system that are
supposed to be important to the characteristics under study.

In this dissertation, another type of models often regarded as hybrid models
is considered. Hybrid models are mergers of dynamic equations and logic
[2,16]. This type of models is more abstract than the scaled physical models
but is well suited to study and analyze hybrid systems.

In our context, a hybrid system is a mechatronics system. Mechatronics is a
term used to denote large number of systems and processes which contain
elements from multiple domains (mechanics, electronics and software) all
brought together to form a system in its own right [43]. Examples of
mechatronics systems include, disk drives, flexible manufacturing systems,
and constrained robots. The reader may imagine more or consult the
literature [30].

Colloquially, hybrid systems are those in which a melding of two worlds,
the digital and analog world exists and they are intertwined to the extent
that “one-world” description is not possible or not traceable. Such systems
seem to arise in variety of applications, due to autonomous or controlled
phenomena [16,17]. In the autonomous case, the system evolution itself
may fall naturally into a finite number of different phases or modes due to
natural phenomena; examples of the later are systems involving collision as
in the famous bouncing ball problem.

The controlled hybrid system arises as a mean of dealing with the
complexity of modern engineering systems through for example, using
logic to switch between various controllers each with predictable behavior
[46]. The simplest example of a controlled hybrid system is the thermostat
[5,6].
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By performing experiments on these models, we can gain understanding of
how the real system will behave if some predefined conditions are met. The
process of experimentation with models is known as simulation. Except by
experimentation with real systems, simulation is the only technique
available for the analysis of system behavior.

In the following sections, we shall begin by elaborating further on some
important keywords. We shall start by reviewing the hybrid nature of
mechatronics as well as modeling and simulation problems associated with
this hybrid nature.

1.1. Mechatronics
It is generally accepted that the operation of any target system or process
requires three fundamental activities [8]:

• Decision-making

• Power Delivery

• Measurements

A knowledge base, which contains qualitative and quantitative models of
the process under control, is used to support these activities. A simplified
system structure for these activities is shown in Figure 1.1.

Decision Making

Power
Delivery

Process
(target system)

Mesurements

Figure 1.1. Fundamental activities in a controlled process

Decision-making: This is a complex activity that utilizes both quantitative
and qualitative models and data from all scales of measurements in order to
infer what should be done. Decision-making capabilities are the indicator
that differentiates modern engineering systems from one to another. This
activity is what effectiveness, functionality, intelligence, creativity and
control by all its forms is all about, and it lies at the center of any controlled
physical, economical, sociological or biological system.

In an automatic vending machine, decision-making implies that the system
should determine what should be the next operation when a customer
inserts a coin into the machine and punches a button to receive an item.
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Another example, in an adaptive system, decision-making implies the
selection of the next control law to be used in order to adapt to process
variations so that the system will be brought into a desired state. Adaptive-
control implements methods such as; gain scheduling, model reference
adaptive control, and self-tuning control [57]. With gain scheduling, for
instance, look-up table containing an arrangement of controller gains is
employed. The full range of available gain settings cover every
circumstances the plant undergo, see Figure 1.2.

Look-up
Table

Controller
Gain 

Found

Controller Physical System
Input

Output

Measurements

Decision Making 

Figure 1.2. Gain scheduler in an adaptive system

This type of decision-making signifies the so-called logical decision-
making. Here the system infer what should be done next based on a logical
model that describe purely logical relation between the input, output and
internal state of the process.

Decision-making could also imply the determination of the amount of
power required for performing an operation, or even the duration of an
operation. Here decision-making utilizes quantitative process models which
describe quantitative relations between process variables.

Power delivery: Power delivery or actuation is required in order to execute
the decision by means of some power source such as electrical motors,
hydraulic pumps and so on.

Measurements: involving collection of both quantitative and qualitative
data from the process and its environment. These measurements give a
picture of what is happening inside and outside the target system.
Collecting these measurements requires instrumentation in order to collect
and transform these real world data from an energy medium to another
suitable for use by other process.

The history of machines shows that the means of performing these activities
have evolved from all mechanical, with or without human intervention to a
fusion of mechanical, electronic, and software components in mechatronics
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systems forming a hybrid system. The following section is a brief review of
this evolution.

1.1.1. Some history
In the beginning, when Man acquired his first primitive tool made of rocks,
Man utilized the available resources in his primitive world such as his
strength (power delivery) in order to move, halt, and to accelerate the tool.
All aspects related to controlling, coordinating and managing the tool’s
motion and himself (decision-making) were then carried out in human’s
brain. This tool represented prehistoric Man's attempt to direct his own
physical strength under the supervision of human intelligence. Thousands of
years later, Man developed simple mechanical devices and machines by
which he could magnify the power of his own strength. These devices, such
as levers and pulleys shown in Figure 1.3, were still directed and
coordinated by a complex decision-making process executed in the human
brain.

Pulley Lever

Figure 1.3. Examples of early machines

Next, came the development of powered machines that did not require
human strength in order to operate, such as waterwheels and windmills,
steam engines, electrical motors and others.

Aeolipile was the first steam turbine invented in the first century AD by
Heron of Alexandria and described in his Pneumatica [20]. The aeolipile is
the first known device to transform steam into rotary motion. Heron used
this device to power an all-mechanical mechanism of pulleys, screws and
wedges assembled to open and close the first automatic door in the history
of invention [19].

This mechanical structure was an early attempt to utilize mechanical
components for implementing logic control. For example, a lever element
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was used to realize a NOT gate, a lever and a spring was used to realize an
AND gate. In fact, many of these elements are still being used in many
automated systems [25].

Although, Heron’s main objective by his invention was only to impress the
monks in the Temple of Alexandria, his invention remains an elegant all
mechanical device for logic control. The all-mechanical device was an early
example of how the decision-making is done in the same medium as the
major power flows in the system.

Each development in the history of powered machines has brought with it
an increased requirement for utilizing new means in order to harness the
power of the machine and to replace the need for humans. The earliest
steam engines required a person to open and close the valves, first to admit
steam into the piston chamber and then to exhaust it. Later a slide valve
mechanism was devised to automatically accomplish these functions. The
only need of the human operator was then to regulate the amount of steam
that controlled the engine's speed and power. This requirement for human
attention in the operation of the steam engine was eliminated by the flying-
ball governor, invented by James Watt in England in 1796 [27].

The flying-ball governor shown in Figure 1.4, remains a classical example
of a negative feedback control system, in which the increasing output of the
system is used to decrease the activity of the system. Flying-ball governor
represented a control device with built in decision-making for controlling
the engine’s speed.

Figure 1.4. Flying-ball governor

The revolving masses are balls attached to a vertical spindle by link arms,
and the controlling force consists of the weight of the balls (control law). If
the load on the engine decreases, the speed will increase, the balls M will
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move out (measurements), and the member C will slide up the vertical
spindle and reduce the steam admitted to the engine (actuation). Thus,
reducing the speed, an increase in the load will have the opposite effect.

The flying-ball governor was not the first regulator in the history of
machine control. However, it draws its significance as it was used by J.C.
Maxwell to demonstrate the importance and usefulness of quantitative
mathematical models and methods in understanding complex phenomena
and signaled the birth of mathematical systems and conventional control
theory [42]. It was not until the invention of operational amplifier for
electronic feedback by Bode, Nyquist and Black at Bell Laboratories, the
computations was carried out electronically [20]. The development of the
operational amplifications techniques opened the door for mechatronics.
They provided a variety of linear, non-linear, static and dynamic computing
actions [8].

1.1.2. Multidisciplinary nature of mechatronics
A number of significant developments in various fields have evolved during
the 20th century: the digital computer, improvements in data-storage and
software technology, advances in sensor technology, integrated circuits,
microprocessors and communication technology. All these developments
have provided mankind with a rich selection of new techniques and tools to
enhance the three activities involved in the process; power delivery,
measurements as well as implementing higher level decision-making as
shown in Figure 1.5.

Decision Making
software and digital electronics 

Power delivery
electronics/mechanics 

(target system)
integrated
electronics 

Mesurements
mechanics/electronics 

Figure 1.5. Multidisciplinary nature of mechatronics

Mechatronics recognizes that the integration of these techniques, and the
resulting transfer of functionality from mechanical domain to software and
digital electronics domain leads to the appearance of a new range of
products with extra qualities in terms of appearance, size, flexibility,
reliability, autonomy and so on [15,31,32,36,54]. With mechatronics
multiple technologies are brought together to form an integrated system.
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In the early days of the 70’s mechatronics was viewed as a combination of
mechanics and electronics and was mainly concerned with servo technology
for higher performance [30]. For example, the mechanical commutation in
direct current servomotors was duplicated by an electronic commutation
using solid state switching elements. In swing machines, the gear
mechanism was replaced by stepping motors with electronic control.
Centralized drives with chains, belts and so on are replaced by decentralized
drives under computer control, leading to simpler kinematics structure. All
these innovations brought with it improvements in performance, reliability
and productivity. Typical mechatronics product at that time included
automatic doors, automatic vending machines, auto-focusing cameras, and
so on.

The introduction of microprocessors technology in the 80’s and advances in
communication technologies considerably enhanced the computational
capabilities of machines in terms of speed and amount of information to be
handled in real time. These innovations opened the door for the introduction
of new (intelligent) functions that was previously done by humans. These
functions were added to the process to increase the speed of response to
failure, to relive the operator from mundane tasks, to protect them from
hazards. The improved and new functions as a result of the integration
between mechanics, electronics and software in mechatronics systems could
be summarized as follows [36]:

• Precise speed control for all operating conditions
• Simpler kinematics by decentralized drives
• Control of non-measurable but reconstructed or estimated variables
• Operation in unstable or dangerous regions
• Adaptive damping of oscillations or unbalance
• Optimization of efficiency or pollution
• Supervision with fault diagnosis
• Anti blockage or slip control
• Overall process management

Indeed, the allocation of technologies and the fusion of the different
domains into an overall working system require a new design philosophy.
In this design philosophy, system thinking, creativity and cost effectiveness
are central elements [15,32].

In mechatronics, digital control makes it relatively easy to build devices in
which the applied control is any computable function of system
measurements. This widens the scope for the system designs that can be
implemented, but the additional design freedom brings with it many more
design parameters. Consequently, we seek tools for modeling and analyzing
the overall system as an integrated unit in order to cope with the newfound
freedom. Modeling tools that take into account restrictions caused by the
integration of both continuous and discrete components for achieving
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optimum system behavior. A task we believe defies any fragmented
approach of modeling. If the concurrent design approach is an important
element for high-quality mechatronics products, then a unified approach of
modeling and simulation is an important element to support such successful
concurrent design. We begin here to develop a unified modeling framework
that can help us to cope with the newfound freedom.

1.2. Mathematical Actors
In the light of the above, a fundamental characteristic of mechatronics
systems is that they contain analog components which make up the physical
system. This system contains the actuators required for power delivery, the
mechanical process, and the instrumentation required for measurements and
signal processing and power modulation. All aspects related to controlling,
coordinating and managing this physical system as well as communications
with the user and other systems are performed by a multilevel decision-
making structure implemented by a digital logic device. The logic device
could be a mode changer, a tuner, or a supervisor depending on the
application. We shall refer to this digital logic device as the logical system.

The physical system lives in a continuous or piecewise continuous time
world. Mathematically seen, its input, output and internal states are all
points in a continuous-time metric space. In contrast, the input, output, and
internal states of the logical system are all points in a discrete metric space
[48]. Hence, a mechatronics system could then be seen as a hybrid system
that mixes together two spaces; a higher level logical system and lower
level physical system as shown in Figure 1.6.

Logical system

Physical system

Figure 1.6. Hybrid nature of mechatronics systems

The theory of hybrid systems have recently evolved in order to encounter
the many theoretical and technological problems associated with the
mixture between the continuous world and the discrete world
[1,2,3,4,5,28,29,46].
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1.2.1. Mode switching phenomenon
Typically, the logical system is used to sense and control the physical
system by issuing discreet directives that will bring the physical system to a
desired mode or state.

Directives issued by the logical system may involve, see Figure 1.7:

1. Switching various continuous controller in and out of use such as
adaptive control

2. Connecting or disconnecting faulty equipment such as fault
detection and recovery.

3. Start or stop an operation such as sequence or logic control.

Controller Physical System
Input Output

Continuous space 

Discrete space 

Logical system 

InputOutput

Sequence Control

Fault Detection

.......
Adaptive Control

Figure 1.7. Directives from the logical system to the physical system

When to issue these directives is up to the logical system. In turn, the
logical system utilizes continuous as well as discrete measurements from
the physical system and its environment.

As far as modeling the logical system is concerned, our aim is restricted to
formalize the logical relations between input, output and internal states and
express this formalization in array terms. The objectives of such model are
to verify the logical requirements and to guarantee that the logical system is
consistent and complete.

We shall generally refer to the directives issued by the logical system to the
physical system as controlled discrete events. These controlled events can
be generally classified into two classes:

1. Control directives that are intended to alter only the input to the
physical system as shown in Figure 1.8. This type of discrete events
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will not contribute to altering the dynamical structure of the
physical system.

u
u

u

1
2

i

xPhysical system 

F(x,u)
u

Q i

Figure 1.8. Control directives Qi only alter the input ui to the physical
system

2. Control directives that will impose discontinuity on the behavior of
the physical system. Here, the physical system will switch or jump
between different continuous system models. Each one is called
mode or a regime with distinct dynamic characteristics as shown in
Figure 1.9.

u

u

u

1
1

1

2

2 2

i
i

i

x

x

x
F(x,u)

F(x,u)

F(x,u)

.

.

.

u

Physical system

x

Q i

Figure 1.9. Directives issued by the logical system iQ cause the physical
system to switch between multiple modes

In this dissertation, we focus on the switching phenomenon that arises
because of the second type of discrete events. Here, the output from the
logical system iQ causes the physical system to switch or jump between
multiple modes.

A system that evolves between different modes of operations where each
mode has predictable behavior is referred to as mode switching system.



19

Mathematically, mode-switching systems are described by multiple set of
equations. Each particular mode is associated with one set of equations
describing the continuous behavior at that particular mode. This multiplicity
will evidently complicate both modeling and simulation, particularly if we
consider the number of models required for describing all modes of
operations.

1.2.2. Computational problems associated with the multiplicity
of models

Seen from the physical system standpoint, one can single out two main
computational problems associated with the multiplicity of models:

1. Initial value problem.

2. Variable state space dimension.

Initial value problem: Each mode model operates as a continuous system
described by the usual differential or difference equations. When the logical
system switches to the next mode, there is a jump discontinuity from the
end of application of the old mode to the beginning of application of the
next mode [48]. This will occur, for example when one use logic to switch
between different continuous controllers, each with predictable behavior
[46].

Variable state space dimension: This problem arises when the length of
state vector in one mode has lower rank than the state vector of the previous
mode. This will occur when modeling components failure or changes in
dynamical description of the continuos system, for example, modeling an
automatic gearbox. In this case, some state variables could no longer be
observable or controllable from this particular mode. Variable state space
dimension is a simulation problem since there is no any numerical
integration algorithm that can handle variable state space dimension.

Thus, as far as modeling the physical system is concerned, our objective in
this regard is to develop a modeling framework by which we can handle the
above two problems and formulate a continuous system model that:

1. Explicitly contains all modes of operations the system undergoes.

2. Preserve state space dimension of the derived explicit model to
remain invariant to switching.

In this formulation, the continuous system model contains real as well as
logic variables from the binary domain. These logic variables represent the
directives issued by the logical system to drive he physical to the desired
mode. Formally, the continuous system model will be given by the hybrid
equations:

),,,( Qtuxfx =&
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Where (x) is continuous state variables, (u) is the input vector to the
continuous system, (t) is time and (Q) is the set of discrete logic variables
involved in mode switching and generated by the logical system.

By such hybrid formulation of the continuous system model we have
guaranteed:

1. Smooth transition (bump-less switching) from one mode to the next
mode.

2. State space dimension of the continuous system model will remain
invariant to switching and hence persevering aspects like
observability and controllability.

1.2.3. Switching elements
Directives issued by the higher level logical system are often executed
using explicit switching elements that are intentionally designed to perform
switching directives. Examples of this category from physical domains are;
electrical switch, mechanical clutch, and hydraulic valves as shown in
Figure 1.10.

Electric 
switch 

Mechanical 
clutch 

Hydraulic 
valve

Figure 1.10. Switching elements from multiple physical domains

In other computer-based applications, directives are executed in a digital or
electronic medium. In both applications, they all share the same discrete
characteristics, they are either active or inactive. Therefore, in the
topological structure of the physical system, all directives from logical
system shall be represented by a switch element that can assume one of two
states [On, Off]. The state of the switch element will be controlled by the
higher level logical system. We shall come back to the characteristics of the
switch element in chapter 5 and 6. Here we only assume that it is present
and represents the interface between the logical and the physical system.

Mathematically, the state of the switch will be represented by a binary
variable ( wS ) to indicate that the switch is in [open] state.

The compliment of this binary variable will then be labeled ( wS
~

) and will
be used to indicate that the switch is in [closed] state.
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ww SnotS =

Table 1.1 shows a summary for the meaning of the binary variable wS  and

its complement wS
~

 in some physical domains.

Binary variable Electrical Mechanical Hydraulic
1=wS Switch is open Clutch is

disengaged
Valve is open

1
~

=wS Switch is closed Clutch is
engaged

Valve is
blocking

Table 1.1. Meaning of the binary variable wS  and its complement wS
~

 in
some physical domains

1.3. Thesis Outline
The thesis contains seven chapters in addition to this introduction. In
chapter two, we shall start by outlining the fundamental principles for
physical and logical system modeling. We shall follow the mathematical
foundations developed in the Scandinavian school of systems theory
particularly those developed in Norway [13] and in Denmark [23,24,47].

In chapter three, we shall consider the first level of interface between the
logical system and the physical system when the objective of the logical
system is restricted to switch between different input vectors for the
physical system to use. A manufacturing system is used as an application
example.

In chapter four, we shall elaborate further on the computational problems
associated with the multiplicity of models. That is, when directives from the
logical system will switch elements and components into and out of use
causing the physical system to switch between different modes or regimes.
In chapter four, we shall also explain the role of switching elements in this
hybrid environment.

In chapter five, we shall present the first approach to deal with mode
switching phenomenon. This approach employs non-ideal switching
elements in order to handle the problems arising from the multiplicity of
models. An automatic gearbox is used as an application example.

In chapter six, we shall present the core contribution of this research and
present a more general approach by utilizing ideal switching elements. The
automatic gearbox has also been used as an application example. Finally,
chapter seven presents the conclusions and discussions.

As we have mentioned in the abstract, during work on system modeling, we
have examined the possibility of using array-based logic for feedback
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control. The intention was to extend the role of logical system from mainly
a switching controller to include feedback controller. The results of this
work are published in [34,35]. We have chosen not to include this part of
the research in the dissertation in order to keep the focus on continuous
system modeling.
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2 PRINCIPLES OF SYSTEM MODELING

The objective of this chapter is to present and outline the main concepts
involved in the process of modeling for both the physical as well as the
logical system.

2.1. Elements of Modeling
A system is defined as a set of connected elements that interact with its
surroundings through sources. The elements carry all properties of the
system, they are the basic primitive components of the system. Connection
reflects how the elements influence each other and it represents the internal
constraints between system elements. The sources reflect the external
constraints between the system and its environment.

Elements

Connections

System
Environment

Sources

Figure 2.1. Elements, connections and sources in the system model

The above definition will be our reference in modeling the physical and the
logical system. The definition is application-neutral and therefore well
suited as a foundation for modeling a multi-disciplinary system. Based on
our perception of a system and throughout the process of modeling, we
shall distinguish between the following concepts, please see Figure 2.2.

Decomposition: The purpose of decomposition is to reduce the complexity
of the total system by dividing the system into a hierarchy of subsystems,
and primitive elements. The breaking up of the total system is carried out on
several stages until the primitive elements that constitute the system are
isolated and identified. The hierarchy of systems, subsystems and primitive
elements is not absolute, since the most primitive part of a system could be
modeled in such detail that it would be a complex subsystem. Along this
hierarchy of systems, subsystems and primitive elements, a subsystem
could be seen as the system part that can be considered as a system in itself,
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with a set of connected elements. On the other hand, a primitive element is
the only component that could be treated as a black box without any need to
know what causes it to act as it does.

Connected  subsystem
 model (3)

Connected system
model

Primitive
elements

Connected  subsystem
 model (2)

Connected  subsystem
 model (1)

Real System

Decomposition

Subsystems

Primitive system
 model

1

2
3

Connection
of subsystems

Connection
of elements

Connections

Figure 2.2. Elements of modeling

Primitive system model: This is a mathematical description of the system’s
elements in the disconnected state. It expresses the relation between the
variables in the elements when the bonds between these elements are
removed. By this model, we isolate a specific behavior; static, dynamic,
logic etc., in each element.

Connections: This is a procedure to be followed in order to transform the
model of the primitive system into the model of the connected system,
which resemble either a subsystem or the total system. The procedure is
generally based on the model of the primitive system and some connection
objects. These connection objects identify connectivity constraints between
system elements or subsystems. Connectivity constraints expressed by
connection objects identify the conditions that the variables in the
individual elements should comply with because of connection.

Connected system model: This is a description of the system after
applying the process of connection on the model of the primitive system.
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2.2. Physical System Modeling
As far as physical system modeling is concerned, our aim is to formalize the
differential equations that describe the dynamic behavior of the system in
array theoretical terms. The algebraic structure of this modeling process is
represented in a computational structure known as Roth’s diagram shown in
Figure 2.3. This structure illustrates the correspondence between the
physical behavior of systems variables and their algebraic structure.
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Figure 2.3. Roth’s diagram

2.2.1. Physical primitive elements
The building blocks of the physical system are those elements that bind
together two state variables a flow variable (i,q), and a potential variable
(e,f). The property of each element (Y) is the quotient between the pair of
these two state variables, such as mass, resistance, stiffness, capacitance,
etc. This system could accommodate three categories of elements, as shown
in Figure 2.4:

1. Generalized damper: e.g. electric resistor, mechanical damper, and
hydraulic resistor.

2. Generalized spring: e.g. electric capacitor, mechanical spring, and
hydraulic reservoir.

3. Generalized mass: e.g. electric inductor, mechanical mass, and
hydraulic inductor.
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damper spring mass

Figure 2.4. Generalized elements

Primitive system model

Mathematically, the primitive system model abcY is a 3-object. It defines the
property of the system in the state of no connection. The layers are arranged
as follows:

Layer 1 contains the properties of those elements that are classified as
generalized springs. The governing equations of layer 1 of the primitive
system are expressed as follows:

c
bcb xYf 1= (1)

Layer 2 contains the properties of elements that are classified as generalized
dampers.  The governing equations of layer 2 of the primitive system are
expressed as follows:

c
bcb xYf &2= (2)

Layer 3 contains the properties of elements that are classified as generalized
mass.  The governing equations of layer 3 of the primitive system are
expressed as follows:

c
bcb xYf &&3= (3)

The governing equations of the primitive system model could then be
obtained by combining Equations (1), (2), and (3), yielding:

=bf
c

bc xY1
c

bc xY &2+ c
bc xY &&3+ (4)

The set of variables ( ccc xxx &&& ,, ) represents generalized displacement,
velocity, and acceleration respectively. The other set of variables bf

represents potential variables. These variables live inside the primitive
system and are referred to as the local variables.
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Example 2-1. Mass-spring-damper system

We will illustrate the procedure of setting up the primitive system model by
a simple example, take for instance the mass-spring-damper system shown
in Figure 2.5. The system contains all three categories of elements that
might exist in any physical system.

r k

p(t)q

m

Figure 2.5. Mass-spring-damper system

The set of local displacements cx is given by the vector Txxx ),,( 321 , the set

of local velocities cx& will then be given by: Txxx ),,( 321 &&& , and finally the set of

local accelerations cx&& will then be given by: Txxx ),,( 321 &&&&&& . The local forces in

the elements bf are given by the vector Tfff ),,( 321 .

The governing equations of layer 1of the primitive system model for the
mass-spring-damper system are:
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The governing equations of layer 2 are:
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Finally the governing equations of layer 3 are:
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Collecting the three layers to set up the 3-object Yabc , yields:
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The governing equations of the primitive system are obtained by applying
Equation (4):
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2.2.2. Connections

While the variables ( ccc xxx &&& ,, ) and ( bf ) live inside the primitive
system abcY , there exists a corresponding set of variables living inside the
connected system ijkY which contains the property of the system when the

elements are connected together. They are referred to as global variables.

The set ),,( jjj qqq &&&  representing generalized displacement, velocity, and
acceleration respectively, and the set ( ip ) representing generalized
potential. The transformation from the primitive system to the connected
system is given by Connection Objects. Connection objects identify how
the local variables in the elements are transformed into the global variables
in the connected system.

In the linear case, this transformation could be defined directly based on the
topological structure of the system. In this case, the connection object

c
jV called the incidence matrix is the only one needed in order to apply this

transformation. It identifies incidence between the nodes and the branches
in the topology graph.

In this case, the transformation from the set of variables ( ccc xxx &&& ,, ) to the

set of variables ),,( jjj qqq &&&  will be given by:

=cx c
jV jq (6)

=cx& c
jV jq& (7)



29

=cx&& c
jV jq&& (8)

The transformation from ( bf ) to ( ip ) will be given by the adjoint
transformation:

ip b
iV= bf (9)

The governing equations of the total connected system are then obtained by
substituting the transformation laws given in Equations (6) (7), (8), and (9)
into Equation (5), yielding:

jc
jbc

b
i

jc
jbc

b
i

jc
jbc

b
ii qVYVqVYVqVYVp &&& )()()( 321 ++= (10)

In compact form:

j
ij

j
ij

j
iji qYqYqYp &&& 321 ++= (11)

For the given mass-spring-damper system, the topology graph of the system
is shown in Figure 2.6.

123

m r k

B
Figure 2.6. Topology graph of the mass-spring-damper system

The topological structure of physical system is based on nominal scale
measurements. In that graph, each element is represented by a branch, the
orientation of that branch is arbitrary, the branch-head node incidence is
considered negative and the branch-tail node incidence is considered
positive, the transformation matrix c

jV could now be obtained:
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(12)

And the transformation b
iV :
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[ ]111

 3    2       1             

                    

−−= iV

b

b
i

(13)

By substituting Equations (5), (12), and (13) into Equation (10), we obtain
the governing equation of the connected system for the mass-spring-damper
system:

qmqrxqtp &&& ++=)(

In the above example, we have demonstrated a systematic procedure we
will follow in order to construct a mathematical model for any physical
system. In the following section, we will interpret this procedure
geometrically.

Geometrically, the primitive system model is formed on three vector spaces
with the variables ),,( 321 xxx , ),,( 321 xxx &&& and ),,( 321 xxx &&&&&&  as shown in Figure
2.7. Each vector space is a 3-dimensional Euclidean space. The property of
the element is used to define the unit vector along the axis corresponding to
the element in that space. The unit vectors along the reference frame is kept
orthogonal in order to fulfill the requirement of no influence between
elements. A point in the space now represents one state of the primitive
system, and all points represent all possible states.
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Figure 2.7. Geometrical representation of the primitive system model

The purpose of the connection is to reduce the theoretically infinite amount
of possible states in the primitive system, to these states that comply with
the constraints given by connection.

The mass-spring-damper system given in the example has only one degree
of freedom, (δ  = 1), therefore the model of the connected system is formed
on three vector spaces with the variables )(q , )(q& , and )(q&& . Each vector
space is only 1-dimensional. All points in that space represent all possible
states that the connected system may undertake, as shown in Figure 2.8.
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Figure 2.8. Geometrical representation of the connected system model

Connection object c
jV  is a mapping between the two spaces. It defines

coordinate transformation between the two spaces. The complexity of this
transformation depends on the nature of the surface the connected system is
located at (flat, curved) and whether or not the reference coordinates
systems are having moving or stationary axes. By solving the system, we
isolate one state of all the states the connected system may undertake that
comply with the constraints imposed by the sources.

2.3. Logical System Modeling - Array Based Logic
The logical decision-making is essentially a verbal description written in
any natural language of the possible input combinations and the desired
outputs or states resulting from the appropriate inputs. Such verbal
description is supposed to fully describe what system response (output) we
should obtain for various (input) combinations.

Input
Logical

relations Output

Figure 2.9. Logical system

As we have indicated before, our aim is to formalize these logical properties
algebraically in array theoretic terms. Therefore, modeling task here is to
synthesize an array-based mathematical model that fully captures these
logical relationships.

Unlike physical systems, this relationship between input and output is
highly irregular and can not be described by differential or difference
equations. According to the relationship between input and output
combinations, logical systems are generally classified into two basic
branches, combinational and sequential.

Combinational logical systems are characterized by the fact, that output is
dependent upon the present input and does not depend on the sequence of
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the input excitations. Combinational systems represent the simplest form of
logical systems.

In sequential logical systems, the output is a function of the current input
and the present state of the system. This requires that a sequential system
has a memory capability, where as a combinational system, being time
independent require no memory. With the increasingly complicated
operations in a sequential system, time synchronization could become
necessary, resulting in a further break down of sequential systems into
synchronous and asynchronous.

Asynchronous sequential systems are characterized by that, system outputs
are generated as soon as input combinations appear. In other words, they are
event dependent.  In synchronous systems, all logic outputs and transitions
occur at specified time intervals according to a global clock. Finally,
asynchronous sequential systems, can be either deterministic, where the
system always operates with the same sequence of input and output or non-
deterministic where the input operates in random pattern. The second type
of non-determinism result from small changes in process parameters.

Array based logic deals only with combinational and sequential
asynchronous logical systems. Both categories can be grouped into one
class of systems referred to as discrete event systems. A discrete event
system is characterized by that input, output variables as well as the internal
state change in discrete fashion and not continuously with time.

Since the general system model presented above is application neutral, it is
therefore applicable to modeling logical systems as well. In logical systems,
we are still capable of identifying the three major components in a system;
elements, connections, and sources. Apparently, the nature of the elements
involved, their connections, and the imposed sources are totally different
from those of the physical system since they embody different aspects.

2.3.1. Logical elements
We define a logical element as the primitive part that carries a logical
variable. Indeed, it is the logical variable which is of interest to us and not
the element itself. This logical variable can in general take a finite set of N-
unique states. This set identifies the universe of discourse for the variable
and hence the domain of each element in the system model.

The domain [false, true] which corresponds to, for instance, [open, close] is
thus a special case of the definition of a logical element with (N = 2).

Since the logical system is actually used to sense and control the physical
system, then logical elements are in fact a collection of abstract
representations on different levels of the physical system and its
environment.
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On one hand, elements of the logical system could represent an abstraction
of some discrete physical elements such as switches, sensors, actuators,
users, other systems and so on. For example, a switch in an electrical
network could have a logical version in the logical system defined by a
logical element with a variable that might take one of two states, [open,
closed].

Physical switch 

Open Closed
Logical element 

Figure 2.10. Physical switch and its logical version

Logical elements could also represent some important trajectories in the
physical system. This higher level abstraction becomes necessary when
implementing higher-level control strategy such as fault detection and
recovery or adaptive control. In this case, logical variables take a finite set
of N-non overlapping states, each state mirrors a region of unique
measurements a continuos state variable in the physical system may take.
For example, the voltage drop across a resistor in an electrical network
could be mirrored to a logical variable called, for instance, Drop with the
domain [S1, S2, S3] as shown in Figure 2.11.

R

V

S1 S3S2

Drop 

Continuous measuerments Logical variable

(V > y) (V < y) (V =y)

Figure 2.11. Logical variable constructed from continuous
measurements

These three non-overlapping states could correspond to the continuous
measurements: (the voltage drop is larger than y voltages), (the voltage drop
is less than y voltages) and (the voltage drop is equal to y voltages)
respectively.

Any logical variable with N-states can actually be reduced to N-variables
where each variable can assume only two states [false, true]. For instance,
the logical variable Drop shown in Figure 2.12, can be replaced by three
variables ( 1S , 2S , and 3S ) where each variable can be either false or true.



34

S S
S

S

S

S

Drop 
Logical variable

0        1

1

0

0

1

1 2

2

3
1

3

Figure 2.12. Equivalent representation of logical variables with 3-states

Logical variables may also represent abstractions of actions or directives to
be applied on the physical system. Directives generated by the logical
system may involve, switching continuous controller parameters,
disconnecting faulty equipment, changing the set point for the continuos
controller, or simply issuing commands to start a sequence of operations.
All these directives are based solely on the logical decision making process
that takes place in the logical system, which utilizes continuous as well as
discrete measurements from the physical system and its environment. For
example, the applied force on a mechanical system could have a logical
version, called for instance, Force with the domain [S1, S2]. These states
could be corresponding to the actions: (apply u1), (apply u2) where u1 and u2

are sequence of continuous control laws or even any constant real values
that will bring the system into a desired mode.

Regardless of the number of states, in array-based logic each state is
assigned with a distinctive binary combination. By assigning a binary
combination for each state, we give more compact and powerful algebraic
description to these logical variables.

2.3.2. Connections
The variables of the logical elements are connected together via logical
connectives to form logical relations or premises iP . The group of basic
logical connectives includes three objects:

Connective Operation Symbol

Conjunction AND ∧

Disjunction OR ∨

Negation NOT ¬
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All logical operations such as implication and bi-implication that usually
classified as basic connectives in classical logic have been excluded since
they can be expressed by the above basic connectives.

The connected system model of the logical system cP  is then obtained by
aggregating all the logical arguments iP . In the case of a system where all
the arguments must jointly be satisfied, the connected system cP  is found by
connecting all the logical arguments using conjunction ( ∧ ):

ic PPPP ∧∧= ......21

Each logical argument iP  is transformed into a multi-dimensional array by
simple array operation (outer product). The connected system cP  is thus the
truth table of the logical system expressed in a multi-dimensional array
form. The number of axes in that array should be equal to the number of
elements, therefore any duplicated axes must be eliminated by using the
method colligation.

The state of each element in the array cP  must be a tautology to insure that
the axes of the array are orthogonal, that is, the variables of the individual
elements in the primitive system are independent of each other. The state of
the connected system cP  must not be a contradiction to ensure that the
system is consistent.

In physical systems, the properties of the system’s elements and their
connections govern the dynamic behavior of the overall system. Clearly,
this line of thought can be extended to logical systems. In analogy to
physical systems, a logical premise is indeed a connected system with its
connectivity constraints are given by how the variables are connected via
the basic logical connectives. The logical connectives in logical systems are
therefore the equivalent to connection objects found in physical systems.
They identify the transformation from the primitive system model to the
connected system model.

2.3.3. Sources
One important condition we had to satisfy in the model of the connected
system was to ensure that all the variables in the system were unbounded
(tautologies). In the course of interacting with environment, the state of one
or more of the variables in the logical system will be bounded to a particular
state. Consequently, the connected system cP  will attain a new state P . This
new state of the connected system satisfies both connectivity constraints
and the external constraints.

This new state is obtained by performing conjunction between the source
vector sP  and the unbounded connected system cP :
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sc PPP ∧=

The state of all logical variables can then be determined by performing
deduction on the connected system P, this is what is known as inference in
classical logic, that is to drive information from the system. The conclusion
is the response of the logical system to input source due to interaction with
the environment.

Example 2-2. Conveyer system

In order to give a clearer picture of this modeling drama, consider the
simple system shown in Figure 2.13. The system consists of a conveyer
operated by an electrical motor. The conveyer is used to transport parts
from end (a) to end (b). Two proximity sensors A and B are used to detect
the presence or absence of parts at end (a) and (b) respectively.

Controller B
A

A B

Power 

Parts

Figure 2.13. Conveyer system

The system works as follows:

Parts are loaded on the conveyer by an operator at end (a) and unloaded
from end (b) by another process. When a part is detected at end (a), the
power supply to the motor is switched on. The motor will then remain in
this state until the part reaches end (b), then power supply will be switched
off until the system detects a part at end (a), and then the cycle will be
repeated.

Elements: Verbal description stated above describes the sequential relation
between logical variables and identifies the functionality of the system.

We shall start by breaking up these verbal descriptions into number of
logical elements that cover the entire state space of the logical system.
These elements carry all the logical variables involved in the description of
the primitive system model. The decomposition of the logical system is
shown in Figure 2.14.
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Elements

Logical System

(If A is On and B is Off 
or Power is On )

then Power remains On 

(If B is On 
or Power is Off )

then Power remains Off 

System

Figure 2.14. Decomposition of the logical system

In the system above, the primitive system mode can be described by the
following variables:

Axis
number

Variable
name

Description
of true state

Description
of false state

Array
representation

1 A  (input) Sensor A is
On

Sensor A is
Off

0  1

2 B (input) Sensor B is
On

Sensor B is
Off

0  1

3 Power
(output)

Power
supply is

On

Power supply
is Off

0  1

Table 2.1. Description of the primitive system variables

The model of the primitive system is established by means of three
orthogonal axes (A, B, and Power). The axes are orthogonal in order to
reflect the fact that these variables are in the state of no connection.

Connections: starting from the lowest layer and moving upwards, each
logical premise is transformed into a multi-dimensional array by performing
outer product and eliminating repeated variables as shown in Figure 2.15.
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Figure 2.15. Connection of logical variables

Connected system model: The connected system model of the logical
system which resemble the logical relation between the state of the power
supply (Power) and the state of the sensors (A) and (B) is shown in Figure
2.15.

1 1

1

1

10 0

0

B B

Power

A

Off

On On

Off Off

Off

Off

On On

On

Pc =

Figure 2.16. Array model of the logical relation between the sensor
states and the output to the motor

This model expresses all the possible combinations of states after taking
into consideration the logical relations between the input variables (A and
B) and the output variable (Power). The model shows that when there are
no parts detected at either end, the state of power supply could be either On
or Off depending on the previous state of the power supply. Suppose that
the current state of the power supply to the motor is On, and both (A) and
(B) are bounded to the On state. The input source vector will then be given
by:

PowerBAPs ∧∧←

As we indicated before, bounded variables should be seen as external
sources on the logical system. The new state of the logical system is then
obtained by performing outer product on the conjunction between the
source array sP  and the model of the logical system:
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sc PPP ∧← , yielding:

0 0

0

0

10 0

0

B B

Power

A

Off

Off Off

Off

Off

On On

On

P =

Figure 2.17. Logical system with bounded input

The new state of the variable (Power) is obtained by performing deduction
on the first and second axes. The conclusion of the above logical system
under the current input is: Power supply is off. The result of simulation the
system for various input combinations and the resultant array model is
shown in Figure 2.18, each input combination, the initial state of the power
supply was off.
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Figure 2.18. System simulation with different input combinations
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2.4. Summary
A total system model could be viewed as two-level structure. The lower
level is the physical system, where its state variables are evolving according
to a set of differential equations. The higher level is the logical system that
handles all the deductive reasoning activities in the system whose logical
variables are abstract description of the physical system and its environment

A logical system is a verbal description of what we expect a given process
or a system to perform. A logical model is an exact mathematical
duplication of such verbal description. A supervisory controller is an
inference engine that utilizes the mathematical model and input from
environment in order to infer what should be done next. Regardless of the
means of realizing the controller, it must always do exactly, what is
required as reliably as is necessary at the lowest possible cost.

ModelSystem

Sequential circuit
Coded program
Combinatorial circuit 
......... 

Logical relations
(A,B,C)

==

Controller 

1 1

11

1 1

1

1

0

0

0 0

0

0

0 1

C

B

A

Figure 2.19. System, model and controller

Three fundamental operations must be performed in order to apply the array
approach to logic. These operations are:

1. Outer product: used to transform a prepositional form expressed in
terms of propositions and connectives into a single multidimensional
array.

2. Generalized colligation: used to eliminate duplicated variables from the
multidimensional array so that the array will only contain independent
axes.

3. Deduction: used to drive information from the array by projection on
different axes.



41

3 INTERFACE

In the previous chapter, we have discussed the identifying features of
mechatronics systems from a modeling perspective. We have shown that a
mechatronics system could be seen as a hybrid system that consists of two
basic systems; a higher level logical system which is responsible for all
deductive reasoning activities and a lower level physical system which is
controlled by the logical system. We have also presented an array-based
formalism by which we established the mathematical models that identify
these two systems.

We have indicated that the logical system is used to sense and control the
physical system by issuing control directives that will bring the physical
system to a desired state. For example to start or stop an activity, or to
switch analog components into and out of use.

With reference to the general system model defined in the previous chapter,
we have distinguished between three different terms:

Elements

Connections

Sources

Elements and connections together defined the property of the overall
system. The sources defined the interaction between the system and its
environment. If we strictly follow this system definition then the interface
between the physical system and the logical system must be classified into
two main categories:

1. Interface through sources. In this category, directives issued by the
logical system are intended to alter the applied sources to the
physical system.

2. Interface through elements and connections. In this category,
directives issued by the logical system are intended to switch
elements and subsystems into and out of the physical system. We
shall denote this type of interface as system interface.

Interface through sources appears when the objectives of the logical system
is restricted to take logical decisions to simply switch between different
input sources for the part of the physical system that will perform a certain
activity. In this case, the output from the logical system shall not contribute
to altering the underlying dynamical structure of the physical system.
Mathematically, this implies that state variables will remain continuous as
long as the input is continuous. This category will be presented in this
chapter.
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System interface arises when the objective of the logical system is to issue
directives that are intended to connect or disconnect elements and
subsystems to the physical system. This sort of interface yields to altering
the dynamical structure of the physical system and impose discontinuity on
its behavior. Mathematically, this causes physical state variables to switch
or jump between different modes of operations. The computational
problems associated with the multiplicity of models will be explained
further in chapter four.

3.1. Interface Through Sources
The objectives of the logical system in this case is restricted to take
decisions to simply switch between different input sources for the part of
the physical system that will perform a certain operation. The evolution of
variables in physical system will remain independent of the logical system
as long as traffic from the logical system is restricted to issuing commands
that affects only the input to the physical system. Actual continuous control
is left here to some sort of a continuous feedback controller. The
architecture of the total system model with the present functional
requirements is shown in Figure 3.1.

Logical system
InputOutput

u
u

u

1
2

i

xPhysical system 
        F(x,u)

Q
i

Figure 3.1. Interface through sources

Mathematically seen, this interface assigns each output signal from the
logical system ( iQ ) with a distinct real valued number ( iu ) for the physical
system to use.

The basic feature of the adopted array representation is the possibility of
treating all objects involved in the description of the system in the same
way independent of size and form and shape. This feature allow us to mix
together the output from the logical system and the input to the physical
system in one single hybrid geometric object that contains real, as well as
binary variables.

The hybrid combination of these signals from different domains is what
known in array theory as a strand object. A strand object is a text object, in
each step of simulation process, its corresponding numeric value has to be
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computed taking into account the instantaneous numeric values of its real
and binary variables.

3.2. Application Example: A Manufacturing System
Given the manufacturing system shown in Figure 3.2. It consists of a
workstation, which is a single-axis-boring machine. The workstation
consists of a boring spindle operated by a direct current servomotor. The
linear motion of the boring spindle is carried out by means of a hydraulic
linear actuator. The hydraulic actuator is powered by a constant pressure
hydraulic pump and the volumetric flow in the hydraulic circuit is
controlled by a servo valve St [39].

Hydraluic 
Actuator Cylinder 

D.C. Motor 

Workpiece 

St

Tv

Hydraluic 
pump

Rapid
phase
valve

Reservoir 
M

E

B

R F

S

I

K 

Figure 3.2. Application example: A manufacturing system

The operation of the system is governed by three sensors (micro-switches)
B, M, and E which are located in the manufacturing system as displayed in
Figure 3.2.

1. Sensor B indicates that the boring spindle is at the rear position.

2. Sensor M indicates that the boring spindle has reached the feeding
position.

3. Sensor E indicates that the spindle has reached its final destination,
and ready for backwards motion.
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Starting from an initial state, the operator switches on the system by a signal
(K) which is a very short signal. The boring spindle is at the rear position
and the workstation is ready for machining the workpiece. Once the
workstation started processing, it can not be interrupted until it completes
one whole cycle. The manufacturing system will go between three modes of
operations:

1. Starting from this idle state, hydraulic circuit will open rapid phase
valve (I), and the workstation will start forward motion by opening
the valve (F).

2. At position (M), the rapid phase valve (I) will be switched off in
order to start a controlled feed forward motion. This motion is
regulated manually by the servo valve St. At position (M) the
spindle motor will also be switched on by a signal (S).

3. At position (E) the backward motion (R) will begin, simultaneously
the rapid phase valve (I) will be switched on.

3.2.1. System modeling
The complete derivation of the logical system and physical system models
is enclosed in Appendix A. Here we present only the final models and carry
out combined simulation in order to verify system requirements. The model
of the logical system can be described by the following variables:

Axis
number

Variable
name

Description of  true
state

Description of false
state

1 K Start Stop
2 B Sensor B is On Sensor B is Off
3 M Sensor M is On Sensor M is Off
4 E Sensor E is On Sensor E is Off
5 F Forward motion is On -
6 S Turn on spindle motor Turn off spindle motor
7 I Turn on rapid motion Turn off rapid motion
8 R Backward motion is

On
-

Table 3.1. Variables involved in the description of the logical system

The model of the physical system is described by the following set of
second order differential equations, given here as two-dimensional array:
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Where:

Symbol Description Symbol Description

fe Applied voltage on stator
windings

p Differential pressure
inside the actuator
cylinder

ae Applied voltage on
armature winding

v Linear speed of the
actuator cylinder

LT Applied torque on the
rotor shaft

zr Viscous damping of the
rotor shaft

x Linear displacement of
the servo valve

fr Electrical resistance of
stator windings

LF Applied force on the
cylinder actuator shaft.

ar Electrical resistance of
rotor windings

fi Electric current in stator
windings

zI Moment of inertia with
load inertia

ai Electric current in rotor
windings

fL Inductance of the stator
windings

w Angular rotation of the
rotor shaft

aL Inductance of the rotor
windings

Lp rr + Resistance to linear
acceleration caused by
the mass of the piston and
the load

g Leakage constant

Lp mm + Mass of the load and
piston

C Constant

k x , kd
Flow and pressure
gradient of the servo
valve

pA Working area of the
actuator piston

As already indicated, the above system contains two independent state
spaces. The physical system and the logical system interact indirectly
through the sensors (B, M, and E) located in the environment of the physical
system. These sensors generate discrete signals for the logical system to
use. The logical system then generates discrete output signals (F, R, I and S)
that will alter the set points for the physical system and bring it to desired
phase of operation.

According to the combination of these signals, the input source to the
physical system ( sI ) will switch between four set points as shown in Figure
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3.3. Each set point will bring the physical system to a specific mode of
operation.

I

I
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Rapid 
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Figure 3.3. Set points for the physical system

The switching between these set points is performed according to the
following combinations of the output signals from the logical system:
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These four set points can be easily combined in one single strand object
( DIS ) which contains real variables as well as the binary variables from the
logical system:
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The first three variables in the array represent applied input to the spindle
motor, evidently they will be activated if and only if the logical system
turns on the signal S.

The signals (F, R, and S) are combined with the displacement of the servo
valve (x) so that the physical system will apply the right amount of flow at
each mode of operation. This yields to:

)())(())((( 321 RxSFxFIxx ×+∧×+∧×=

Where:

1x  is the amount of flow through the hydraulic circuit during rapid phase
forward motion.

2x is the amount of flow through the hydraulic circuit during regulated
phase forward motion.

3x is the amount of flow through the hydraulic circuit during backwards

motion.

Finally, eventual disturbances on the hydraulic system will only take place
if the system is either in the backward or forward mode:

)( RFFF LL ∨×=

In order to investigate the overall behavior of the manufacturing system,
simulation of the manufacturing system will be consisting of two simulation
loops as shown in Figure 3.4. The first loop is for solving the logical
system, that is, to determine the response of the logical system to the input
from sensors. The output from the logical system is then accessed to the
second loop. In the second loop, the input source vector DI s  will be
updated and its numerical value will be computed. Simulation of the
physical system is then carried out by solving numerically the differential
equations representing the dynamic behavior of the manufacturing system.

(B,K,M,E)

Update

(F,S,I,R)

Physical system

Logical system

I

I D

Input 

Output

Output

s

s

Figure 3.4. Simulation loops for the manufacturing system
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3.2.2. Simulation
As indicated in the previous section, the manufacturing system will switch
between four modes of operation during one complete cycle of operation.
We shall start simulation by considering each mode separately and then
simulation for the whole cycle will be carried out.

Rapid phase feed forward motion

Starting from the idle mode when the whole system is at rest and the boring
spindle is at the rear position and the user has just pressed start button. The
state of input signals to the logical system will be bounded to the following
states:

K B M E
On Off Off Off

Table 3.2. State of input signals to the logical system

The state of the output signals are determined by applying deduction on the
multidimensional array (P), this will give us the following output signals:

F I R S
On On Off Off

Table 3.3. State of output signals: rapid phase feed forward motion

In the second loop, this combination of output signals will be used to
compute the numerical value of the input source vector to the physical
system model:
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The result for simulating the physical system in the second loop at this
mode of operation for the linear velocity (v) and the differential pressure (p)
inside the hydraulic actuator is shown in Figure 3.5.



49

Figure 3.5. Linear velocity (v) and differential pressure (p) in the
actuator cylinder during rapid phase feed forward motion

Controlled feed forward motion

In this mode, the workstation will switch from a rapid phase motion to a
regulated feed forward motion. This regulation is controlled by the servo
valve St. Accordingly, the state of input signals to the logical system will be
as follows:

B M E
Off On Off

Table 3.4. State of input signals for controlled feed forward motion

The states of the output signals are determined by consulting the logical
system. The logical system will respond by issuing the following output
signals:

F I R S
On Off Off On

Table 3.5. State of output signals: controlled feed forward motion

In the second loop, this combination of output signals will cause the
physical system to switch to the following set of input sources:
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Simulation of the linear velocity, the differential during the controlled feed
forward motion is shown in Figure 3.6.

Figure 3.6. Linear velocity (v) and differential pressure (p) in the
actuator cylinder during controlled feed forward motion

Backward motion

Provided that the boring spindle has finished boring the work piece.
Accordingly, the state of input signals to the logical system will be as
follows:

B M E
Off Off On

Table 3.6. State of input signals: Backward motion

The state of the output signals from the logical system:

F I R S
Off On On On

Table 3.7. State of output signals: Backward motion

In the second loop, this combination of output signals will cause the
physical system to switch to the following set of input sources:
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In this phase of motion, the rapid phase valve will be opened and the
backward motion will start as shown in Figure 3.7.

Figure 3.7. Linear velocity (v) and differential pressure (p) during
backward motion

Simulation of the whole cycle for the differential pressure and linear
velocity of the actuator cylinder is shown in Figure 3.8.

Figure 3.8. Differential pressure (p) and linear velocity (v) of the
actuator cylinder through one cycle of operation

We can summarize the most visible advantages of this combined simulation
by the following:

1. Verification of the overall system requirements, that include
dynamic as well as logical requirements.
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2. Determination of the minimum parameters (x2 and ea) which would
assure satisfactory continuous control (relatively quick adjustment
to reference angular velocity for the spindle motor or adjustment to
reference linear velocity for the hydraulic cylinder.)

3. Adjusting physical system parameters or the location of micro
breakers in order to avoid switching from one mode to another
during transient periods.

3.3. Summary
The practical advantage of using multidimensional arrays to describe the
physical as well as the logical properties is that combined simulation of
both systems can be carried out concurrently using any array oriented
simulation environment. In presenting the interface through sources, we
saw that the output from the logical system affects only the input to the
physical system. Logical system output does not contribute to altering the
underlying dynamical structure of the physical system. The logical system
merely switches on or off the power supply to the part of the physical
system that will perform an activity. The actual continuous control is then
left to some sort of a feedback controller.
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4 SYSTEM INTERFACE

System interface arises when the objective of the logical system is to issue
directives that will connect or disconnect elements and subsystems into and
out of the physical system. This sort of interface yields altering the
dynamical structure of the physical system and impose discontinuity on its
behavior. Mathematically, this causes the physical system to switch
between different modes of operations possibly accompanied by jumps in
its state variables.  This explains why the term mode-switching systems is
often used in this context.

Mathematically, mode-switching systems are described by multiple set of
equations. Each particular mode is associated with one set of equations
describing the continuous behavior at that particular mode as shown in
Figure 4.1.
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Figure 4.1. Physical system with multiple mode models

This multiplicity will evidently complicate both modeling and simulation,
particularly if we consider the number of models required for describing all
modes of operations. From computational viewpoint, there are two main
problems associated with the multiplicity of models:

1. The initial value problem

2. The variable state space dimension

These two problems are explained further in the following sections.
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4.1. Initial Value Problem
Each mode model operates as a continuous system described by the usual
differential or difference equations. When the logical system switch to the
next mode model there is a jump discontinuity from the end of application
of the old mode to the beginning of application of the next mode. In order to
guarantee smooth transition (bump-less switching) from one mode to the
next mode, the state of the continuous system prior switching must probably
be transferred to the continuous system after switching [9]. We shall
illustrate what we have in mind by the following example.

Example 4-1. Mass element on a friction-less surface

Consider the second order dynamic system shown in Figure 4.2, which
consists of mass element (m) moving along a friction-less surface. Suppose
that the input applied to the mass element is a continuous function of time
(t) and given by:

)
2

cos( tf
π

=

mf

Figure 4.2 A dynamic system consisting of mass element moving on a
friction-less surface

Suppose further that a higher level logical system is used to switch between
two continuous controllers at ( 10=t ) to change it from

ksryc += 11 to ksryc += 22

Where 21 , rr are damping gain constants and k is stiffness gain constant.

Accordingly, the dynamical system will at ( 10=t ) switch between two
models:

ksrmsf ++= 1
2 and      ksrmsf ++= 2

2

If the state of the second model was set to zero at the instant of switching,
then the bumpy output of Figure 4.3 will result.
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Figure 4.3. There is a discontinuity in the output when we switch the
control law without setting the state

The modeling framework we propose here, solve this problem and ensure
smooth transition from one mode to another without having to setting the
state of the system at each transition. This is achieved by formulating a
hybrid model that explicitly contains all modes of operations the system
undergoes.

4.2. Variable State Space Dimension
Note that in the previous example, state-space dimension of the dynamic
system remained invariant to switching. In some applications, switching
may cause the state vector at one mode to jump to a higher or lower order.
This implies that some state variables could no longer be observable or
controllable from that mode. Variable state space dimension is also a
simulation problem since there is no numerical integration algorithm that
can handle variable state space dimension. We shall illustrate what we have
in mind by the following example.

Example 4-2. Electrical network with a switch

An electrical network is shown in Figure 4.4. The network is driven by a
single voltage source. The network consists of four elements and one ideal
switch ( wS ). The switch can be toggled, by a higher process, between two
states: [open, close].



56

L

R

R

2

1
4

C

S

es

3

w

Figure 4.4. Electrical network with a switch

The system with the present configuration will jump between two
distinctive state space models. Each model describes the dynamic behavior
of the network for each switch state. The first mode model ( 1M ) is
activated when the switch is in the open state. The property graph for this
mode is shown in Figure 4.5.
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Figure 4.5. Property graph of the circuit when the switch is open

In this mode, the circuit consists only of three elements 421 ,, RRL  forming
the closed path (a). If we select element 2 and element 4 to form a tree in
the graph, then the corresponding mesh connection matrix of the circuit
would be given by:
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The primitive system model of the circuit in the present mode is given by
property matrix Z:
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Where 
dt

d
s = is a differential operator.

The connected system model of this mode of operation is obtained by
applying the transformation:

ZKKZ t
L =

This gives us the second order differential equation:

aas qRRqLeR &&& )( 4212 ++=

The state space model of this mode of operation can be obtained by
transforming the above second order differential equation into two first
order differential equations:
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The components of the state vector x that describe the behavior of the
network at this mode represent:

• 1x : is the generalized displacement (charge in electrical networks)
generated in the closed path (a) formed by the elements 21 , RL and

4R

• 2x is the generalized flow (current in electrical networks) generated
in the closed path (a) formed by the elements 21 , RL and 4R

The second mode of operation ( 2M ) is activated when the switch is in the
closed state. In this mode, the circuit will be consisting of two closed paths
as shown in Figure 4.6. Closed path (b) formed by elements 21 , RL and 3C

and closed path (c) formed by elements 3C and 4R
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Figure 4.6. Circuit layout and its property graph when the switch is
closed
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If we select element R2 and element R4 to form a tree in the graph, then the
corresponding mesh connection matrix of the graph would be given by:
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Following the same procedure as we did to derive the model of the first
mode of operation, we obtain the following set of equations that describe
the behavior of the network when the switch is in closed state:
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In the second mode of operation, when the switch is closed, the components
of the state space vector x represent:

• 1x : is the generalized displacement generated in the closed path (b)
formed by the elements 21 , RL and 3C

• 2x : is the generalized flow generated in the closed path formed by
the elements 21, RL and 3C

• 3x : is the generalized displacement generated in the closed path

formed by the elements 3C and 4R

Providing that the switch was initially closed then it is easy to observe that
toggling the state of the switch to open state will contribute to a rank
reduction of the state vector. The length of the state variable vector x will
be reduced to two variables, eliminating 3x  from the mathematical model,

although the variable itself did not actually die out, it is just disappeared
from the state space model.

The problem will be magnified when a transition from ( 1M ) to ( 2M ) takes
place. If such transition occurs, the eliminated state variable must be
reinitialized in such manner that the energetic interaction within the
structure remains preserved.
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One side of the problem is the initial value problem discussed in Example
4-1. The other side of the problem is related to observability and
controllability of the network. For instance, state variable 3x is neither

observable nor controllable from the first mode of operation. As we have
indicated before, this is also a simulation problem since there is no
numerical integration algorithm than can handle variable state space
dimension.

4.3. Switching Elements
The previous examples show that directives from the logical system are
either realized by physical switching elements as we have seen in Example
4-2. Examples of this category from physical domains are; electrical switch,
mechanical clutch and hydraulic valves as shown in Figure 4.7.

Electric 
switch 

Mechanical 
clutch 

Hydraulic 
valve

Figure 4.7. Switching elements from multiple physical domains

These directives could just as well be performed in a digital medium, as we
have seen in Example 4-1 without having to use physical switching
elements. What is common in both cases is indeed the concept of presence
or absence of these logical directives and not the medium that executed
switching. Therefore, in the modeling framework we present here, every
logical directive shall be represented by a switch element that can assume
one of two states,[On or Off]. In turn, the state of the switch element is
controlled by the higher level logical system.

4.4. Model Formulation
Researchers have proposed two possible approaches to fix the problems
arising from multiplicity of models. First, by employing ideal switches with
variable circuit topology. The conditions for transition from one mode to
another as well as initialization rules associated with each transition are
then included in a global discrete structure [22,52]. Although this approach
offers a great deal of flexibility, its main disadvantage is that all modes of
operations the continuous system could undergo as well as initialization
rules for each transition must be identified in advance.
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The other approach is to employ non-ideal switches with constant circuit
topology, this approach actually solves the initial value problem and
system’s state space dimension remains invariant to switching. However, it
fails to represents systems with ideal switching case.

Our objective is to present a modeling framework that automatically will
generate a hybrid continuous system model. This model explicitly contains
all modes of operations the physical system undergoes. In this formulation,
the continuous model contains real as well as logic variables from the
binary domain. These logic variables represent the directives issued by the
logical system to drive the physical to the desired mode. Topologically,
these logical directives will be substituted by explicit switching elements in
the physical system. We begin in chapter 5 to present the first approach
which uses non-ideal switching elements.
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5 NON-IDEAL SWITCHING ELEMENTS

In order to encounter the problems arising from multiplicity of models, one
possible approach to solve this problem is to employ non-ideal switching
elements with artificial resistance. In this representation, the switch in its
closed position is represented by a very small but not vanishingly small
resistance and in its open position by a very large resistance.

In section 1.2.3, we introduced the concept of switching elements to
represent the interface between the physical and logical system.
Mathematically, the state of the switch was represented by a binary variable
( wS ) to indicate that the switch is in the [open] state. The compliment of

this binary variable was then be labeled ( wS
~

) and was used to indicate that
the switch is in the [closed] state.

)(
~

ww SnotS =

By using this binary variable, we could include the switch element as a part
of the primitive system model with the following property:

)()
~

( wowc SRSRy +=

When the switch is closed, we get ( 1
~

=wS ) and we obtain the following
property:

0≅= cRy

This is similar to having an element connected between two nods with very
small resistance. This resistance element will act as a short circuit between
the two nodes and cause the potential of the two nodes to be identical.
When the switch is open, we get ( 0

~
=wS ) and we obtain the following

property:

 ∞≅= Ry

This is similar to having an element connected between two nodes with
very high resistance. This corresponds to having an open circuit between
the two nodes causing the inflow and outflow to be equal to zero.
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Example 5-1. Mechanical system with non-ideal clutch

In order to illustrate the process of modeling with non-ideal switching
elements, consider the mechanical system shown in Figure 5.1. It consists
of two axial shafts that are connected via a mechanical clutch. The
corresponding property graph of the system is shown to the left of the
mechanical system. The clutch element in this example is replaced by a
damper with an artificial damping.

r1r2
I3 I4

Clutch 

τ r1
r2 I3 I4

A B

Property GraphMechanical system

Sw

Figure 5.1. Mechanical system with non ideal clutch

The primitive system model of the mechanical system is given by the
property matrix Y:
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From the property graph, the corresponding connection matrix is given by:
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The corresponding set of equations that describe the system is obtained by
applying the transformation ( YVVY t

N = ) yielding the set of second order
differential equations:
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When the clutch is engaged, we get ( 1
~

=wS ), and the differential equations
of the system become:
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Where: ∞≅cr

When the clutch is disengaged, we get ( 0
~

=wS ), and the differential
equations describing the system become:
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Where 0≅or

The logical conditions for switching are embedded in a higher level logical
system. The logical conditions for switching is assumed to be time-related
condition in which the clutch will change its state according to the
following condition:



 ≤≤≤≤

=
otherwise

tOrot

engaged

disengaged
Sw

)7.12.1()6.0(    

The result of the combined simulation for the angular rotation and angular
velocity of the two axial shafts is shown in Figure 5.2 and Figure 5.3
respectively.

Figure 5.2. Angular rotation of the two axial shafts (node A and node
B)
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Figure 5.3. Angular velocity of the two axial shafts (node A and node B)
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5.1. Application Example: Gearbox
The gearbox described here is presented briefly in [22]. The gearbox is
constructed to prevent freewheeling when changing gears. The gearbox is
controlled by changing the forces pushing the plates in the clutches towards
each other. The gearbox has a forward gear, a backward gear, and a number
of different gearing for both directions. The load is representing the weight
of the vehicle. In the current example, we only use two clutches for two
different gearing in the forward direction. The forward gear is assumed to
be already engaged. A simplified schematic diagram of this part of the
gearbox is shown in Figure 5.4.

Clutch for gear 1
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Clutch for gear 2
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9

4

M

10

wo

w
L

13

Figure 5.4. Simplified diagram for the gearbox

The gearbox could be seen as two dual transformer systems T1 and T2. The
first dual transformer system T1 consists of three cogwheels with the
characteristics parameters 21 , rr and 3r . The three cogwheels has mass

moment of inertia 21 , II  and 3I  respectively.

The second transformer T2 also consists of three cogwheels with the
characteristic parameters 54 ,rr and 6r , and with mass moment of inertia

54 , II  and 6I respectively.

First clutch, labeled )( 1wS is connected between T1 and T2 via axles (8,10)

with mass moment of inertia 8I  and 10I . Second clutch, labeled )( 2wS is

connected between the two transformers via axles (7,9) with mass moment
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of inertia 7I  and 9I . The corresponding property graph of the gearbox is

shown in Figure 5.5.
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Figure 5.5. Property graph of the gear box

In the property graph, node A and C represent the plates of the second
clutch. Node B and D represent the plates of the first clutch. Since the
gearbox is constructed to prevent freewheeling, a new gear has to be
slightly engaged, before the previous gear is disengaged. This is done by a
proper control law for the normal forces applied on the clutch plates as
shown in Figure 5.6.

Clutch plates

F

F

F

F

First gear 

Second gear 

Figure 5.6. Normal forces applied on the clutch’s plates

These normal forces are the control variables used to execute gear changes.
With zero normal force on the first clutch, the clutch will be disengaged.
The degree of engagement will increase with increased normal force until
the plates are fixed on each other. In the given reference [22], there were no
data given for the control law of these normal forces applied on the plates of
the clutches due to secrecy. Therefore, we shall substitute these controlled
normal forces applied on the clutch’s plates by changing gradually the
viscous friction between clutch plates as the clutch plates are sliding
towards each other.
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In the light of the above, we can conclude that the gearbox in the current
example has three modes of operation as shown in Figure 5.7.

 

First clutch is engaged
Second clutch is engaged
First clutch is disengaged 

Second clutch is disengaged 

w
t t
1 2

M1 M2 M
3

Mode for the first gear

Both clutches 
are slightely 

engaged

Sliding Mode Mode for the second gear

Figure 5.7 Modes of operations for the gearbox

The gearbox runs in its first mode when the first clutch is totally engaged
and the second clutch is totally disengaged. The second mode of operation
is the sliding mode, this mode is activated during transition from the first
gear to the second gear when both clutches are slightly engaged to avoid
freewheeling. Finally, the gearbox runs in its third mode when the second
clutch is totally engaged and the first clutch is totally disengaged.

5.1.1. Logical conditions for switching
Provided that the gearbox is initially in the first mode 1M , the gearbox will
remain in this mode as long as the angular speed of the load is less than the
reference speed for switching:

wL <ϖ

In this mode of operation, since the second clutch is completely disengaged,
then the property of the second clutch ( 12y ) will be given by:

2012 wSRy =

Where 00 ≅R

The property of the first clutch will be given by:

 111
~

wc SRy =

Where ∞≅cR

The gearbox enters its second mode of operation when the condition for
switching is detected that is, when ϖϖ =L , in this mode, the viscous
friction in the first clutch will decrease gradually to make it slide until it is



68

completely disengaged. Concurrently, to increase the friction gradually in
the second clutch, until the second clutch is completely engaged as shown
in Figure 5.8.

First gear is engaged

Second gear is engaged

First gear is disengaged 

Second gear is disengaged 

ω

Vicous friction

Figure 5.8. Gearbox in its second mode (sliding mode)

Provided that the gearbox enter this mode at ( 1tt = ) and exits at ( 2tt = ),
then the property of the first clutch at this mode of operation could be given
by the linear function:

212012 )( wSttRy −×=

The property of the first clutch at this mode of operation is given by:

11211
~

)(1 wc SttRy −−×=

The gearbox enters its third mode of operation when the second clutch
becomes totally engaged and the first gear become totally disengaged. The
corresponding property of the clutches at this mode will be given by:

212
~

wc SRy =

1011 wSRy =

Now we can combine the property of the second clutch at all modes of
operation in one array hybrid equation:

)
~

())(( 22122012 wcwcw SRSttRSRy ×+×−×+×=
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Similarly, The property of the first clutch for all modes of operation could
be expressed by the following hybrid equation:

)
~

()
~

)(1( 11121011 wcwcw SRSttRSRy ×+×−−×+×=

5.1.2. System modeling
The only thing that remains is to establish a system model and run
simulation in order to investigate the behavior of the system in the presence
of non-ideal switching elements. As usual, we shall start by defining
primitive system model of the gearbox and its corresponding connection
matrix.

For simplicity, we shall neglect the effect of vicious friction in the
cogwheels of both transformer elements and assume that the axles (7, 8, 9,
and 10) connecting (T1) with (T2) are very stiff. The purpose of this
simplification is made in order to reduce the size of the computational
model.
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Where:

I is the mass moment of inertia.

dt

d
s =  is a differential operator.

The running index (1,2,3,….13) refers to element number.

11y and 12y are the property of the clutch element described above.

Connection matrix: since we are dealing with non-ideal switching
elements then the gear box must have only one connection matrix:
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5.1.3. Simulation

For simulation purpose, we assumed that time span from 1t to 2t is one
second. This is the time from the instant the system detects that the
condition for switching is fulfilled until it accomplishes switching from the
second mode to the third mode. We shall start simulation under the
assumption that the central cogwheel in (T1) is subjected to a torque given
by this step function: 12 =SI

Figure 5.9 shows the angular velocity of the load (element 13) and
transformer system T1 and T2, during all modes of operations that are
clearly visited as shown by simulation.

Figure 5.9. Output angular velocity of the load and transformer
systems T1 and T2
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Figure 5.10 shows the angular velocity of the second clutch plates (node A
and C). The figure shows that after switching the angular velocity of the
plates is approximately identical. The offset between the plates speed is due
to the use of non-ideal switching element.

Figure 5.10. Angular velocity of the second clutch plates (node A and
node C)

Figure 5.11 shows the angular velocity of the plates of the first clutch, the
figure also shows that the plates-speed was approximately equal prior
switching during the first mode.

Figure 5.11. Angular velocity the first clutch plates (node B and node
D)
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5.2. Summary
Control directives issued by the logical system could alter the underlying
equations of the physical system. The overall system behavior in this case is
hybrid in nature, exhibiting both continuous and significant discrete
characteristics. In order to handle the computational problems arising from
the presence of discrete and continuos variables, one possible approach is to
fix the topology of the physical system to remain unaffected by the discrete
variables. This was accomplished by representing these discrete variables
by non-ideal switching elements with artificial resistance. From a
mathematical point of view, by such formulation we accomplished the
following advantages:

1. We obtained an explicit mathematical model that contains all modes of
operations. All variables were kept observable at all modes and the
system’s state space dimension remained invariant to switching.

2. Combined simulation of both discrete and continuous system has
become possible.

The price of using non-ideal switching element is evidently the accuracy of
the results. For instance, in the last example, we could notice a slight offset
between the angular velocity of both plates, which is not theoretically
accurate since after the engaging the clutch, both plates must have identical
angular velocity.
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6 IDEAL SWITCHING ELEMENTS

In the ideal case, a switch element distinguishes itself from all other types
of physical elements in the way its variables are related. In an ideal resistor,
resistor’s state variables are related via the property Resistance which
identifies how many units of potential variables we get from one unit of
flow variables flowing through the resistor:

Rie =

In an ideal switch, there is no static relation that tells us how the
transformation from flow variables ( swi ) to potential variables ( swe ) can be
performed.

Let us investigate what types of relation exist between flow and potential
variables in an ideal switch. First, when the switch is closed, a short circuit
will be established between the terminal of the switch and consequently the
potential drop across the switch will become equal to zero. At the same
time, the flow through it becomes different than zero as shown in Figure
6.1.

Sw
=0e

i1

i
2

i

Figure 6.1. Switch is closed, flow variable is different than zero and
potential drop is equal to zero

When the switch is open, open circuit is established and this cause the flow
through the switch to become equal to zero and the potential difference
between the boundaries of the switch becomes different than zero as shown
in Figure 6.2.
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i
Sw
=0

e1

e2

Figure 6.2. Switch is open, flow variable is equal to zero and potential
variable is different than zero

The amount of flow through the switch is determined only by the amount of
flow through the elements connected to the switch, which in turn depends
on the state of the switch. Therefore, the important aspect in this regard is
the notion of the presence or absence of switch variables and not their
magnitude.

The notion of presence or absence implies that switch variables can only
take values from the binary domain in contrast to the variables in the basic
primitive elements that can take values from the real number domain. If the
switch is closed, then in binary terms this corresponds to setting

)0(),1( == swSw ei .  On the other hand, opening the switch corresponds to

setting )1( =Swe and )0( =swi  as shown in Figure 6.3.

01 e

0 1 i
Sw

Sw
Open Close

0 1 i0.5 1.5

0 1 e0.5 1.5

Switching elements Primitive elements

Figure 6.3.  Domain of variables in switching and primitive elements

The above discussion shows that:

• The concept of property of an ideal switch element can only be defined
in binary terms. It either exists or does not exist. Thus, it can not be
measured and therefore considering the ideal switch, as a part of the
primitive system must be ruled out

• The only variable that could be modeled explicitly in systems
differential equations is the absence or presence of flow or potential
variables in the switch.
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In summary, an ideal switch element could not be treated, as a primitive
element since no algebraic relation can be established between its state
variables. The question which we shall elaborate further is what is a switch
element and where does it belongs on our system model.

We shall use node connection procedure as a reference for model
formulation. Node connection procedure is located at the right hand side of
Roth diagram. It is used to set up the model of the total system based on the
model of the primitive system (Y), the connection matrix (V) and a set of
node sources (IN) and element sources ( sI ). The algebraic structure of this
procedure is shown in Figure 6.4.
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Figure 6.4. Node connection procedure

6.1. The Switch As a Connection Element
As a connection element, the switch adds one more connectivity constraint
to the elements connected to its boundary nodes. In its closed state, it forces
the potential drop at its boundary nodes to be identical ( 21 ee = ) as shown in
Figure 6.5.

e
1

e
2

Switch
Element

Boundary nodeBoundary node
Reference

Figure 6.5. Switch as a connection element- closed state
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How to take this extra connectivity constraint into consideration in order to
generate a compact and explicit model. At the same time to keep the
dimension of the state space model invariant to these additional constraints
is what we shall discus in the following sections.

6.2. Types of Switch Connection
With reference to the general system model described in section 2.1, we
could single out two unique types of switch connection in the topology
graph:

1. The switch is used to connect or disconnect an element as shown in
Figure 6.7. In this case, altering the state of the switch will not alter the
state space dimension of the continuous system. It will cause the
physical system to switch between two different models that share the
same dimension.

A BSw

1

2

3 4

Figure 6.6. Switch is used to connect or disconnect elements

2. The switch is connected between two free nodes as shown in Figure
6.7. In this case, altering the state of the switch will cause state
variables to jump between two different modes where each mode has
different state space dimension.

A BSw

1 2 3

Figure 6.7. Switch is used to connect or disconnect nodes

We will show that toggling the state of the switch from one state to another
cause connection objects to change by a certain pattern. This implies that
once we identify connection objects at one mode, connection objects in the
other modes can be found by simple array operation. These implications
simply reduce the amount of work needed to identify and capture all
possible combinations of mode models. In addition, it offers us the freedom
of automating model formulation.
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We will now present in detail the topological and algebraic consequences as
well as a modeling procedure for each case.

6.2.1. Switch is connected in series with an element
In the first case, the switch element is connected in series with an element
between two nodes as shown in Figure 6.8.

Switch is open Switch is closed

A A
B BS Sw w

I IN N

1 1

2 2

3 34 4

Figure 6.8.  Switch is connected in series with an element

Topologically, this type of connection will not lead to any reduction or
increase in the number of nodes in the property graph and therefore the state
space dimension will remain invariant to switching.

In physical terms, closing the switch corresponds to allow a flow variable to
pass through the element. Hence, element transformation will take place if
and only if the switch is closed. Mathematically this can be expressed by
the following hybrid equation:

wSiyf
~

..=

Where:

( f ) is the force across the element.

( i ) is the flow passing through the element.

( wS
~

) is switch state.

( y ) is element property.

The state of the switch can be combined with the property of the element,
since the flow through the element is only allowed if the switch is closed:

 iSyf w )
~

.(=

iyf .′=
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When the switch is closed, wS
~

will be equal to one and the property of the

element ( y′ ) will be equal to ( y ). When the switch is open, wS
~

will
become equal to zero and therefore the property of the element will become
equal to zero.

Accordingly, the primitive system model could be now given by the hybrid
strand object:
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The connection matrix of the system will remain invariant to the state of the
switch element because such connection does not affect the topological
structure of the property graph.
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Connected system model is then obtained as usual by applying the
transformation:

)( YVVY t
N =

Example 6-1. Switching circuit

Consider the electrical circuit shown in Figure 6.9. The corresponding
property graph of the circuit is shown to the left of the figure.
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First, we shall start as usual by identifying the primitive system model of

5L  then the
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element when the switch is closed. The model of the primitive system will
be given by:
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From the property graph, the corresponding connection matrix will be given
by:
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The corresponding set of equations that describe the system are obtained by
applying the transformation ( YVV t ) yielding to the set of second order
differential equations:
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When the switch is connected, we get 1
~

=wS , and the differential equations
of the system yields:
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When the switch is open we get ( 0
~

=wS ) we obtain:
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As expected, this is a trivial case, since the transition from one mode to
another will not cause any rank reduction of state space. It will affect only
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the numerical values of the connected system model. The system in the
example was also simulated using the same set of logical conditions for
switching in Example 5-1. Figure 6.10 shows the result for simulation for
the voltage drop of both nodes ( NAe , NBe ).
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Figure 6.10. Voltage drop of node A and B

Let us now turn the attention to the problem of variable structure control
presented in Example 4-1, which is presented for convenience in Figure
6.11. Note that, in this problem there are no real physical switches to
perform switching, therefore they have to be made and added to the
connection model.

mf

Figure 6.11. A dynamic system consisting of mass element (m) moving
on a frictionless surface under the applied force (f)

In the example, it was given that the dynamical system is supposed to
switch between two control laws at (t = 10), from:

( ksryc += 11 )    to ( ksryc += 22 )

By examining these continuous control laws, it was easy to observe that
switching implies to connect ( 2r ) and concurrently disconnect ( 1r ) at
(t = 10). The spring constant in both control laws was not affected by
switching. Now we can reconstruct the topology of the dynamical system to
include one ideal switch connected to the rest of the system as shown in
Figure 6.12.
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Figure 6.12. Dynamic system with ideal switching element

The logical condition for switching is then given by the following
condition:





≥
<

=
)10( 

)10( 

0
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tfor

tfor
S w

With respect to the discussion outlined above, switching does not cause any
jumps or reduction to the order of dynamical system. Therefore, the state of
the switch can be combined with the primitive system model:
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Connection object V is obtained from the topology of the dynamical system:
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The connected system model is then obtained by applying the usual
transformation, yielding the following hybrid equation:

kswSrSwrmsf +++= )
~

( 21
2

When the system runs in its first mode, we get )1( =Sw and the differential
equation of this mode becomes:

ksrmsf ++= 1
2

When the system runs in its second mode, we get )0( =Sw  and the
differential equation of this mode becomes:

ksrmsf ++= 2
2
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The hybrid model ensures smooth transition from one mode to another
without having to worry about setting the state of the system at each
transition as shown in Figure 6.13.
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Figure 6.13. Pump-less switching obtained by a hybrid formulation of
continuous system model

6.2.2. Switch is connected between two free nodes
In this case, the switch is connected between two free nodes, closing the
switch will lead to a stiff connection between the boundary nodes of the
switch as shown Figure 6.14.

A AB BSw

1
12 23 3

Switch is open                     Switch is closed 

Figure 6.14. Stiff connection as a result of closing the switch

The consequence of such topological fusing is the reduction of the number
of differential equations required for describing system behavior. The
dimension has been reduced from two equations to only one equation since
each node in the property graph represents one degree of freedom the
system can have. Therefore, fusing two nodes leads to a state space
reduction and some variables will no longer be observable in this mode.

In order to avoid state space reduction as a result of switching, a switch
element in the closed state will be represented in the property graph as a
bold line connected between the two free nodes without any orientation as
shown in Figure 6.15.
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A BSw

1 2 3

Figure 6.15. Switch representation in the property graph

Using this bold line as a traffic way, the elements connected to node B
could be moved along the line and linked to node A. Similarly, the elements
connected to node A could be moved along the line and linked to node B, as
shown Figure 6.16.

A BSw

1

2 3

Figure 6.16. Swapping of elements between node A and node B when
the switch is closed

Therefore, a switch element in the property graph can be seen as a highway
that permits the movement of variables from one node to another. This
imaginary highway will help us to generate automatically connection
objects which are valid for each switch state.

In Figure 6.17, we have drawn the property graph prior and after closing the
switch. Provided that the switch initially is open. The connection matrix at
this mode can be set up.

A BSw

1 2 3

A BSw

1

2 3

Figure 6.17. Property graphs for both modes

To the left of Figure 6.17, the compatibility condition at node A is given by:

NAee =1

Where ( 1e ) is the local displacement of element one, and ( NAe ) is the
displacement of node A. Similarly, compatibility condition at node B is
given by two equations:
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NBee =2

NBee =3

Where ( 2e ) and ( 3e ) are the local displacements of element two and three,
and ( NBe ) is the displacement of node B. The corresponding connection
matrix representing these three constraints labeled 1V will be given by:
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
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
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10

10

01

3

2

1

BA               

1V

Physically, closing the switch corresponds to forcing the displacement of
both nodes forming the boundary of the switch to be identical, that is:

NBNA ee =

This simply means that the compatibility conditions at each node can now
be transmitted to the other node through the free-way established by closing
the switch, that is from node A to node B and vice versa. By this
transmission, we did not violate any physical rule, we just looked at the
compatibility condition from two different spots. Hence, with reference to
the right side of Figure 6.17, the compatibility conditions at the two nodes
can now be re-written as:

NBee =1

NAee =2

NAee =3

Thus, the corresponding connection matrix of the system which reflects this
connection is given by 2V :
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If we compare 1V with 2V we could observe that they could be deduced from
each other by simply swapping the columns of the nodes that are connected
to the switch:
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Providing that the switch normally is open, then the model of the connected
system could be obtained by applying the transformation:

w
tt

N SYVVYVVY
~

)()( 2211 +=

When the switch is closed, wS
~

will be equal to one. This gives us the
following set of equations:

)()( 2211 YVVYVVY tt
N +=

When the switch is open, wS
~

 will be equal to zero and we obtain:

)( 11 YVVY t
N =

By this formulation, we kept the dimension of the system, invariant to
switching and at the same time included the extra constraint caused by the
presence of the switch. All modes of operations the system undergoes are
modeled explicitly in systems differential equations. The following
examples will be used to illustrate model formulation under different
circumstances.

Example 6-2. Mechanical system with ideal clutch

Consider the same mechanical system that was used in Example 5-1.  It
contains two axial shafts that are connected via an ideal clutch. The
corresponding property graph of the system is shown to the left of the
mechanical system in Figure 6.18.

r1r2
I3 I4

Clutch 

τ

τ

r
1

r2 I3 I4

A B

Mechanical system Property graph

Figure 6.18. Mechanical system with an ideal switching element

First, we shall start as usual by identifying the primitive system model of
the mechanical system given by the property matrix Y:
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In Figure 6.19, We have re-drawn property graph for the two modes of
operations the system can take.

1 234

A BSw

12 3 4

A BSw

Clutch is disengaged Clutch is engaged

τ
τ

Figure 6.19. Property graphs of the mechanical system in both modes
of operations

When the clutch is disengaged, the corresponding connection matrix will be
given by:
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The connection matrix for the system when the clutch is engaged labeled

2V is obtained by swapping the location of the entire column A and column
B in the connection matrix:
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The differential equations of the system can now be generated by the
transformation:

w
tt

N SYVVYVVY
~

)()( 2211 +=

This transformation gives the following set of hybrid equations:
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If the clutch is disengaged, the binary variable wS
~

 will be equal to zero and
we obtain the following set of equations:
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In the second mode when the clutch engaged, wS
~

becomes equal to one, and
we get the following set of equations:
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The logical conditions for switching was assumed to be time-related events
in which the clutch will change its state according to the following
conditions:



 ≤≤≤≤

=
otherwise

tOrot

engaged

disengaged
Sw

)7.12.1()6.0(    

Figure 6.20, shows the angular velocity of the two axial shafts (node A and
node B) in response to a step input torque around the prime mover shaft,
that is node A in the property graph.
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Figure 6.20. Angular velocity of node A and node B (ideal switching
case)

The next figure shows the angular rotation and angular velocity of node B
in response to the same input torque. The figure shows clearly that all
variables were observable from all modes of operation and the conditions
for transition from one mode to another were implicitly contained in the
mathematical model.

Figure 6.21. Angular velocity and angular rotation of Node B (ideal
switching case)
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Example 6-3. Property graph with ideal switch

Consider the property graph shown in Figure 6.22. An ideal switch is
connected between node A and element 2. In this example, the tail node of
element 2 is subjected to input source NI .

A BSw

IN

1

2

3 4

Figure 6.22. Property graph with an ideal switching element

Structurally, the property graph of the system is identical to the property
graph in the controlled switching case presented in section 6.2.1. However,
since the tail node of element 2 is subjected to input source, it becomes
impossible to apply the procedure of section 6.2.1. The procedure used in
section 6.2.1 is valid if and only if there are no sources applied at the point
that connects the switch to the element.

In this case, the property graph has to be re-drawn to reflect the fact that the
tail node of element 2 must be seen as an independent node that carries a
global variable as shown in Figure 6.23.

A BSw

IN

1

2

3 4

C

Figure 6.23. Reconstructed graph

The graph shown in Figure 6.23 structurally obeys the procedure outlined in
section 6.2.2. From the property graph shown to the left in Figure 6.24,
when the switch is open, the corresponding connection matrix will be given
by:
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Figure 6.24. Property graph before and after switching

Connection matrix for the system when the switch is closed (shown to the
right of Figure 6.24) is obtained by swapping only column A and column C.
column B in this case remains unaffected by the switching.
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The differential equations of the system can now be generated by the
transformation:

w
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)()( 2211 +=
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6.3. Application Example: Gearbox – Ideal Case
Now it is tempting to try to model the gearbox presented in the previous
chapter but with ideal clutches this time. The gearbox is again shown in
Figure 6.25.
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Figure 6.25. Simplified diagram for the gearbox

We have pointed out that the gearbox is configured to switch between three
different modes of operations shown in Figure 6.26.

First clutch is engaged
Second clutch is engaged
First clutch is disengaged 

Second clutch is disengaged 

w
t t
1 2

M1 M2 M
3

Mode for the first gear

Both clutches 
are slightely 

engaged

Sliding Mode Mode for the second gear

Figure 6.26. Modes of operations for the gearbox

In order to consider the three modes of operation, each clutch shall be
represented by two ideal switches and one damper. The damper represents
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viscous friction between clutch plates during sliding mode. The label
11Sw , 12Sw , and 11y  will be used to represent the first clutch. The labels

21Sw , 22Sw , and 12y will be used to represent the second clutch as shown in
the property graph of the gearbox in the ideal case in Figure 6.27.

1

T1

2 36 B
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T2

810

794

5I

D

Sw

Sw

Sw

Sw
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21

11

22

12
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11

Figure 6.27.  Property graph of the gear box- ideal case

It could be observed that the model of the gearbox with ideal clutches could
be seen as a combination of the first case discussed in section 6.2.1 and the
second case discussed in section 6.2.2.

6.3.1. System modeling
We shall start the analysis from the second mode since it contains the
maximum number of elements and the model has the highest state space
dimension. Figure 6.28 shows the state of the switches in the second mode
of operation. In this mode, both 11Sw  and 21Sw  are open

while 12Sw and 22Sw  are closed. This will cause the damper 11y to be

connected between node B and node D, and the damper 12y to be connected
between node A and C. As we have indicated, both dampers represent the
viscous friction in the clutches during sliding mode.

Sw

Sw

Sw

E

Figure 6.28.  State of the switches during sliding mode
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In sliding mode, the viscous friction of both clutches is combined with the
switch’s state in the formulation of the primitive system model as we have
pointed out in section 6.2.1.
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Where

I is the mass moment of inertia

dt

d
s =  is a differential operator

)
~

( 12111111 wSSwby ∧×=  is the property of the first clutch during sliding
mode

)
~

( 22211212 wSSwby ∧×=  is the property of the second clutch during sliding
mode

The running index (1,2,3,….13) refers to element number

Viscous friction in the clutches during this mode vary according to the
following linear functions:

)( 1212 ttbb −×=

)(1 1211 ttbb −−×=

 The corresponding connection matrix for the property graph shown in
Figure 6.29 is given by 1V :



94

















































−
−

−
−−

−

−
−

−

=

1

0

0

0

0

0

0

0

0

0

0

0

0

    

0000/10

010100

101000

1000/10

0100/10

001-00/1

00010/1

0000/10

0000/10

0000/10

00000/1

00000/1

00000/1

13

12

11

10

9

8

7

6

5

4

3

2

1

E    D     C     BA            T2          T1                 

5

6

4

3

1

6

5

4

3

2

1

1

r

r

r

r

r

r

r

r

r

r

r

V

Now let us analyze the system in the other two modes and establish the
corresponding connection matrices. Figure 6.29 shows the state of the
switches in the first mode of operation. In this mode, all the switches are in
open state except 11Sw , this will cause the angular velocity of both node B
and node D to remain identical as long as the 11Sw  is closed.
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Figure 6.29.  State of the switches during first mode

The corresponding connection matrix for the system at this mode is labeled

2V . It is obtained by swapping columns B and D in the connection matrix

1V , yielding:
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Finally, Figure 6.30, shows the property graph of the gearbox in the third
mode of operation. In this mode, all the switches are in open state except

21Sw , this will cause the angular velocity of both node A and node C to be
identical as long as 21Sw is closed.

Sw

Sw

Sw

E

Figure 6.30. State of the switches at third mode of operation

The corresponding connection matrix for the gearbox in this mode labeled

3V , is obtained by swapping columns A and column C in the connection
matrix 1V , yielding:
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Now the model of the connected system could be obtained by applying the
transformation:

2133112211
~

)(
~

)()( wSYVVwSYVVYVVY ttt
N ++=

6.3.2. Simulation
Figure 6.31 shows that in the first mode the angular velocity of first clutch
plates are identical, since the clutch in this case is totally engaged.
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Figure 6.31. Angular velocity of the first clutch plates (node B and D)
during all modes of operations
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When the gearbox enters its second mode, the plates starts to slide away
from each other but still slightly engaged. In the third mode, clutch plates
are totally disengaged and the gearbox enters its third mode.

Figure 6.32, shows the angular velocity of the second clutch plates, in the
first mode both plates are rotating with different speeds since they are
totally disengaged. As the gearbox enters its third mode, the angular
velocity of the plates start to approach each other until they become
identical when the gearbox enters its third mode.
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Figure 6.32. Angular velocity of the second clutch plates (node A and
C) during all modes of operations

Finally, Figure 6.33, shows the relation between the angular velocities of
the transformer system T1 and the load during all modes of operations.
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Figure 6.33. Angular velocity of transformer system T1 and the load
during the three modes of operations the gearbox undergoes-ideal case
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6.4. Summary
Depending on the location of the switch element in the topology graph, we
have presented two algorithms for model formulation.

The first algorithm is applied when the switch is connected in series to an
element. From computational point of view, toggling the switch in this case
does not alter the state space dimension of the continuous system. An
explicit mathematical model that contains all modes of operations is
obtained by including the state of the switch as a part of the primitive
system model.

The second algorithm is applied when the switch is connected between two
free nodes. From computational point of view, the state of the switch affects
the state space dimension of the continuous system model. In order to avoid
state space reduction and to keep all variables observable from all modes
we fixed the dimension of connection objects so that they remain invariant
to switching. We have also shown that switching the state of switching
elements from one state to another cause connection objects to change by a
certain pattern. This implies that once we identified connection objects at
one mode, connection objects in the other modes can be found by simply
swapping the columns corresponding to the boundary nodes of the switch.
These implications simply reduce the amount of work needed to identify
and capture all possible combinations of mode models. It also allows
automatic generation of models.
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7 CONCLUSIONS

Mechatronics systems are hybrid systems with interacting discrete and
continuous components. The continuous structure represents the physical
system which includes the actuators, the target system and the measurement
system. The discrete structure represents the logical system which could be
seen as a mode changer, a supervisor, a state machine or a tuner depending
on the application. The logical system senses and tries to control the
physical system by issuing discrete logical directives at event times that will
bring the physical system to a desired mode or state.

As far as modeling the logical system is concerned, our aim was restricted
to formalize the logical relations between input, output and internal states
and to express this formalization in array terms. The objectives of this
model are to verify the logical requirements and to reveal potential conflicts
and inconsistency in the overall system.

The interface between the physical system and the logical system is
classified into two main categories:

3. Interface through sources. In this category, directives issued by the
logical system are intended to alter the applied sources to the
physical system.

4. System interface through elements and connections. In this
category, directives issued by the logical system are intended to
switch elements and subsystems into and out of the physical
system.

Interface through sources appears when the objectives of the logical system
is restricted to take logical decisions to simply switch between different
input sources for the part of the physical system that will perform a certain
activity. In this case, the output from the logical system shall not contribute
to altering the underlying dynamical structure of the physical system.
Mathematically, this implies that state variables will remain continuous as
long as the input is continuous.

System interface arises when the objective of the logical system is to issue
directives that are intended to connect or disconnect analog components
into and out of the physical system. This sort of interface yields to altering
the dynamical structure of the physical system and impose discontinuity on
its behavior. The overall system then evolve in a piecewise continuous
manner, where governing equation changes at event time possibly
accompanied by jumps in state variables. Mathematically, this causes
physical state variables to switch or jump between different modes of
operations. We have focused primarily on the computational problems that
arise due to this switching phenomenon. The presented modeling
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framework is designed to handle these computational problems, in
particular the problems of variable state space dimension and initial value
problem. The practical advantages of our modeling framework could be
summarized as follows:

1. Model formulation could be automated

2. Simulation is kept continuous through all mode transitions

We should point out that, the modeling framework presented here is only
valid for linear systems. In linear systems, connection in the system is
defined by one connection object, the incidence matrix-V. In non-linear
systems, we have more complicated situation, since the connection in the
system is defined by three connection objects, the displacement object, the
velocity object and the acceleration object. Future work in the application of
manufacturing systems theory to mode switching systems should consider
systems with non-linear connection.

As far as the logical system is concerned, we have only considered the
logical aspects. In real world applications, the concept of time and duration
must be taken into account in order to ensure that the system will deliver at
the right time in addition to be logically correct. Future work must take into
account the real-time aspects.
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APPENDIX A: MANUFACTURING SYSTEM

A.1. Physical System Model
At the top level of the hierarchy, the workstation could be decomposed into
two subsystems, a hydraulic subsystem and the boring spindle subsystem
and the conveyer. The boring spindle subsystem could be further
decomposed into two subsystems as shown in Figure A.1.

ω

Boring spindle subsystem Hydraluic
subsystem

Electrical motor

Spindle ω m

Figure A.1. Boring spindle subsystem

These subsystems are:

1. Direct current motor

2. Spindle and the load

The hydraulic subsystem shown in Figure A.2, could be decomposed into
the following subsystems:

1. Cylinder actuator

2. Hydraulic pump

3. Hydraulic circuit

4. Servo valve
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Figure A.2. Hydraulic subsystem

The hydraulic circuitry represents the paths formed by the connection of
tubes and reservoir. The connection between circuit elements represents a
direct connection between the components of the hydraulic subsystem. In
this circuit, the volumetric flow is subjected to resistance to flow and
resistance to acceleration by the reservoir. Both the hydraulic cylinder and
the pump resemble a sort of connection analogous in terms to the electrical
motor. They connect variables from two different domains.

The decomposition of the continuous system is shown in Figure A.3.



107

Basic Elements

Physical System

Hydraulic subsystem
Boring spindle

subsytem

Workstation 
Continuous System

Hydraluic pump

Servo valve

Hydraluic circuit

Actuator cylinder Electrical motor

Subsystems

Subsystems
Load 

Figure A.3. Decomposition of the workstation

Breaking up the physical system into subsystems and down to basic
elements will allow us to isolate a certain phenomenon we intend to model.
This will provide us with a sharp insight about the evolution of the physical
quantities within each subsystem yielding to better understanding of the
modes and the states that each subsystem would attain. The advantages of
having such insight will become visible during the design phase of a local
continuous control system. The connection process is a bottom up process,
we connect elements to form models of subsystems, and these models could
be simulated and refined for optimal system performance. In connection, we
start at the bottom level of this hierarchy and move upwards. Algebraically
seen, that implies to propagate from a primitive system model to a
connected system model on multiple stages by using connection objects.
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Figure A.4. Connection process

When we move up to the next level in the hierarchy, we start again with a
description of a primitive system model and propagate to a connected
system model using another set of connection objects. Fortunately, we do
not have to repeat the above process for each single component because
physical systems often contain standard components like, dc motors, step
motors, sensors and so on. A model definition for such standard
components could be done once and then reused for different products.
Connections that resemble the internal constraints within the boundaries of
each subsystem define the transformation from the primitive system model
to a connected system model in the upper level. For example, in Figure A.4,
connection object Vm resembles the transformation from the primitive
system model of the motor to the connected system version of the motor.

A.1.1. Modeling boring spindle subsystem
The differential equations describing the connected system model of the
direct current motor is given by [14]:
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where ( f a z, , ) refers to the axes of field windings, armature windings, and
rotor shaft of the direct current motor respectively. ( i ) is the electrical
current, (ω z ) is the angular speed of the rotor shaft, ( e ) is the applied

voltage. ( i ka e ) is the generated motor torque to balance the inertia and
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friction of the rotor shaft, ( rz ) is the viscous damping.( r ) is the electrical
resistance. (km , ke) are mechanical torque and back emf constants
respectively.( jz ) is the moment of inertia of the rotor shaft. ( L ) is the

electrical inductance.( s d dt= ) is a differential operator

The load seen by the rotor shaft is the spindle itself. Assuming a stiff
spindle then the spindle can be considered as mass element with inertia
property to resist angular acceleration. The dynamic equation that describe
the behavior of the spindle:

LLL jT ω&=

Where TL is the applied load torque on the spindle,( Lj ) is the inertia of the
spindle and Lω is the angular speed of the spindle

The primitive system model of the boring spindle subsystem is set up by
aggregating diagonally the connected system models of the D.C. motor and
the load:
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Assuming a stiff and direct connection between the spindle and the rotor
shaft then globally seen, the boring spindle subsystem will have one angular
velocity (ω ) which is equal in magnitude and direction to the local angular
velocity of the rotor shaft (ω z ) and the angular velocity of the spindle

(ω L ). This relation is defined by the connection object Vs:
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The connected system model of the boring spindle subsystem is obtained by
applying the transformation )( s

t
s VYV ⋅⋅ , yielding:
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A.1.2. Modeling hydraulic subsystem
For the advantage of simplicity we will ignore the dynamics of the
hydraulic pump because it produces a constant pressure and the actual
control of the fluid flow into the actuator cylinder is done by varying the
servo valve position. The dynamic response of the actuator cylinder and the
load is much slower than the dynamic response of the spool valve.
Therefore, the dynamics of the servo valve can also be neglected.

There are two features that must be considered when analyzing the
hydraulic cylinder. The first feature appears because of the tendency of the
movable elements in the hydraulic cylinder such as the piston to resist
motion and acceleration due to the generated forces by the pressure inside
the cylinder. In that case, forces applied and generated must be at balance,
and the hydraulic piston must satisfy equilibrium condition. The second
feature appears because of the characteristics of the fluid and the cylinder.
In this, the fluid inside the hydraulic circuit must always satisfy the
continuity principle.

Equation of force: The piston inside the actuator cylinder has two
properties, resistance to a linear velocity, this property is given by viscous
damping caused by the motion of the piston (rp) and resistance to linear
acceleration caused by the mass of the piston (mp). The dynamic model of
the piston is shown in Figure A.5.

Figure A.5. Actuator cylinder model

The dynamic equation that describes the connected system model of the
piston inside the cylinder which resembles the spring-mass characteristics
of the hydraulic system is given by:

[ ] [ ][ ]pppp vsmrF  +=
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The force generated by the actuator cylinder Fp is simply the differential
pressure p multiplied by the working area of the actuator piston Ap:

pp ApF ⋅=

Continuity equation: In order to complete the analysis for the actuator
cylinder, we must consider that the medium inside the hydraulic cylinder is
not a vacuum. The cylinder is filled with a fluid that has specific physical
characteristics that must be considered when deriving the dynamic model of
the hydraulic cylinder. When volumetric flow takes place inside the
cylinder. The cylinder will act like a hydraulic reservoir (capacitor)
accumulating stored potential energy (pressure). Thus, the cylinder has a
capacitor like property given by:

spCQ ⋅=

Where (C) is a constant that could be calculated by the equation: 
B

V
C t

4
=

Where ( tV ) is the total cylinder volume and (B) is the bulk module of the
fluid. What we have presented here as the capacitance property of the
cylinder is known as compressibility constant in classical hydraulic control
theory.

Since the cylinder is not perfectly sealed, some of fluid volume will leak
through the sealing to the outside or between the two sides of the piston
inside the cylinder representing dissipated or wasted potential energy. This
lost potential energy will reduce the total differential pressure inside the
cylinder. Thus, the cylinder has a conductance like property given by:

pgQ ⋅=

Where (g) is a constant and known as the leakage constant in classical
hydraulic theory. For actuator cylinder the leakage constant could always be
ignored.

The amount of volumetric flow inside the piston is generated by the applied
differential pressure on the piston area

pAQ p ⋅=

The complete equation of continuity which describe the balance of fluid
flow inside the actuator cylinder is obtained by combining the above
equations:

spCpgvAQ pp ⋅+⋅+=

By combining the force equation and continuity equation, we obtain the
connected system model of the hydraulic cylinder:
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Servo valve model: With constant pressure supply Ps, the volumetric flow
rate Q0 is proportional to the displacement of the spool valve x.

xkQ x=0

The droop effect is the shift in spool valve position as a result of the load.
Droop causes a slight drop in the volumetric flow rate (Qd).

 pkQ dd =

Net volumetric flow to the piston will be given by:

pkxkQQQ dxd −=−= 0

Where k x and kd are flow and pressure gradient of the servo valve.

By combining the equations describing the actuator cylinder and the servo
valve, we obtain the connected system model of the hydraulic cylinder:
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The load seen by the hydraulic actuator is the boring spindle subsystem.
The boring spindle seen as a mechanical load has two properties; resistance
to linear velocity given by a viscous damping of the table the boring spindle
is moving on (rL) and resistance to linear acceleration given by the total
mass of the boring spindle system (mL). The dynamic model of the load is
shown in Figure A.6.

Figure A.6. Load model

The connected system model describing the load subsystem seen by the
hydraulic cylinder:

[ ] [ ][ ]LLLL vsmrF  +=

The primitive system model of the total hydraulic subsystem is set up by
aggregating diagonally the connected system models of the hydraulic circuit
and the load:
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 Assuming a stiff and direct connection between the load and the piston,
then globally seen, the hydraulic subsystem will have one linear velocity (v)
as shown in Figure A.7

Figure A.7. Hydraulic subsystem

According to Figure A.7, the connection object between the load and the
actuator cylinder will be given by:
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The complete connected system model of the hydraulic subsystem is
obtained by applying the transformation )( h

t
h VYV ⋅⋅ :
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Finally in more compacted form, the model of the hydraulic subsystem
could be expressed as follows:


























+++−

++=







− v

p

smmrrA
k

A
Cskg

k
F

x

pLLpp

x

p
d

x
L )()(

))((
1

Notice the similarity between the connected system model of the hydraulic
actuator and the connected system model of the electrical actuator. They
differ from each other only by the magnitude of model parameters and not
in the main model structure.
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A.1.3. Total physical system model
The model of the physical system is set up by aggregating diagonally the
connected system models of the hydraulic subsystem and the boring spindle
subsystem and applying the transformation )( M

t
M VYV ⋅⋅ . The connection

matrix of the manufacturing system is unity in this case. Then the connected
system model of the manufacturing system will be given by:
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A.2. Logical System Modeling
The behavior of the logic controller can be described by the following
variables that represents the local variables in the primitive system model of
the process controller. The axis number define which axis is assigned to
which variable.

Axis
Number

Variable
Name

Description of True
State

Description of False
state

1 F (output) Forward motion is On -
2 K (input) Start Stop
3 E (input) Breaker E is On Breaker E is Off
4 S (output) Spindle motor is On Spindle motor is Off
5 M (input) Breaker M is On Breaker M is Off
6 I (output) Rapid motion is On Rapid motion is Off
7 R (output) Backward motion is On -
8 B (input) Breaker B is On Breaker B is Off

Table A.1. Variables of primitive system in the process controller

Connected System: The variables in the primitive system are connected
together via the basic logical connectors (AND, OR and NOT) to form
premises that defines the functions of the controller. These rules [39] tell
simply what we expect the process controller to do:
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Linguistic description Symbolic description
R1: Precede the forward motion if and
only if start signal is On or the boring

spindle is already moving forward and it
did not reach the breaker E

R1: F = (K OR F ) AND
(NOT E)

R2: Open rapid motion valve I if and
only if the boring spindle is moving

forward and it has not yet reached the
breaker M

R2:  I = (F AND NOT M)

R3: Start the spindle motor if and only if
the boring spindle is moving forward or

it reached the breaker M

R3: S = (F OR M)

R4: Start the backward motion if and
only if the breaker B is off and the feed

forward is off.

R4: R= (NOT F) AND
(NOT B )

Table A.2. Functions of the logic controller

It is implied by rule 2 that the rapid motion valve will be closed and
regulated feed forward motion will start when breaker M is On. It is also
implied by the first rule and the last rule that the backward motion will start
when the breaker E is On. It is also implied by rule 3 that the spindle motor
will continue rotating even in the backward motion this will allow a smooth
depart from the work piece.

By propagating to the next level in, the above rules are aggregated using the
conjunction AND. This aggregation will form the connected system model
for the controller.
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The multidimensional array which describe the model of the logical system
is given here:
        |-----------------------------------------------------K
        |---------------------S         |---------------------S
        |-------I     |-------I         |-------I     |-------I
  _ _ _  __B  __B   _  __B  __B     _ _  __B  __B   _  __B  __B
  | | | |01  |00    | |00  |00      | | |00  |00    | |00  |00
  | | | |10  |00    | |00  |00      | | |00  |00    | |00  |00
  | | | R    R      | R    R        | | R    R      | R    R
  | | |  __B  __B   |  __B  __B     | |  __B  __B   |  __B  __B
  | | | |01  |00    | |00  |00      | | |00  |00    | |00  |00
  | | | |10  |00    | |00  |00      | | |00  |00    | |00  |00
  | | M R    R      M R    R        | M R    R      M R    R
  | |                               |
  | |   |-------I     |-------I     |   |-------I     |-------I
  | | _  __B  __B   _  __B  __B     | _  __B  __B   _  __B  __B
  | | | |01  |00    | |00  |00      | | |01  |00    | |00  |00
  | | | |10  |00    | |00  |00      | | |10  |00    | |00  |00
  | | | R    R      | R    R        | | R    R      | R    R
  | | |  __B  __B   |  __B  __B     | |  __B  __B   |  __B  __B
  | | | |01  |00    | |00  |00      | | |01  |00    | |00  |00
  | | | |10  |00    | |00  |00      | | |10  |00    | |00  |00
  | E M R    R      M R    R        E M R    R      M R    R
  |
  |
  |     |---------------------S         |---------------------S
  |     |-------I     |-------I         |-------I     |-------I
  | _ _  __B  __B   _  __B  __B     _ _  __B  __B   _  __B  __B
  | | | |00  |11    | |00  |00      | | |00  |11    | |00  |00
  | | | |00  |00    | |00  |00      | | |00  |00    | |00  |00
  | | | R    R      | R    R        | | R    R      | R    R
  | | |  __B  __B   |  __B  __B     | |  __B  __B   |  __B  __B
  | | | |00  |00    | |11  |00      | | |00  |00    | |11  |00
  | | | |00  |00    | |00  |00      | | |00  |00    | |00  |00
  | | M R    R      M R    R        | M R    R      M R    R
  | |                               |
  | |   |-------I     |-------I     |   |-------I     |-------I
  | | _  __B  __B   _  __B  __B     | _  __B  __B   _  __B  __B
  | | | |00  |00    | |00  |00      | | |00  |00    | |00  |00
  | | | |00  |00    | |00  |00      | | |00  |00    | |00  |00
  | | | R    R      | R    R        | | R    R      | R    R
  | | |  __B  __B   |  __B  __B     | |  __B  __B   |  __B  __B
  | | | |00  |00    | |00  |00      | | |00  |00    | |00  |00
  | | | |00  |00    | |00  |00      | | |00  |00    | |00  |00
  F E M R    R      M R    R        E M R    R      M R    R

Figure A.8. Array model of the workstation

The multidimensional array Pc has 8 axes, each axis corresponds to one
variable.
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